Clean
This commit is contained in:
		| @ -1,331 +0,0 @@ | ||||
| <?php | ||||
| /** | ||||
|  * PHPExcel | ||||
|  * | ||||
|  * Copyright (c) 2006 - 2011 PHPExcel | ||||
|  * | ||||
|  * This library is free software; you can redistribute it and/or | ||||
|  * modify it under the terms of the GNU Lesser General Public | ||||
|  * License as published by the Free Software Foundation; either | ||||
|  * version 2.1 of the License, or (at your option) any later version. | ||||
|  * | ||||
|  * This library is distributed in the hope that it will be useful, | ||||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | ||||
|  * Lesser General Public License for more details. | ||||
|  * | ||||
|  * You should have received a copy of the GNU Lesser General Public | ||||
|  * License along with this library; if not, write to the Free Software | ||||
|  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA | ||||
|  * | ||||
|  * @category   PHPExcel | ||||
|  * @package    PHPExcel_Shared_Best_Fit | ||||
|  * @copyright  Copyright (c) 2006 - 2011 PHPExcel (http://www.codeplex.com/PHPExcel) | ||||
|  * @license    http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt	LGPL | ||||
|  * @version    1.7.6, 2011-02-27 | ||||
|  */ | ||||
|  | ||||
|  | ||||
| /** | ||||
|  * PHPExcel_Best_Fit | ||||
|  * | ||||
|  * @category   PHPExcel | ||||
|  * @package    PHPExcel_Shared_Best_Fit | ||||
|  * @copyright  Copyright (c) 2006 - 2011 PHPExcel (http://www.codeplex.com/PHPExcel) | ||||
|  */ | ||||
| class PHPExcel_Best_Fit | ||||
| { | ||||
| 	protected $_error				= False; | ||||
|  | ||||
| 	protected $_bestFitType			= 'undetermined'; | ||||
|  | ||||
| 	protected $_valueCount			= 0; | ||||
|  | ||||
| 	protected $_xValues				= array(); | ||||
|  | ||||
| 	protected $_yValues				= array(); | ||||
|  | ||||
| 	protected $_adjustToZero		= False; | ||||
|  | ||||
| 	protected $_yBestFitValues		= array(); | ||||
|  | ||||
| 	protected $_goodnessOfFit 		= 1; | ||||
|  | ||||
| 	protected $_stdevOfResiduals	= 0; | ||||
|  | ||||
| 	protected $_covariance			= 0; | ||||
|  | ||||
| 	protected $_correlation			= 0; | ||||
|  | ||||
| 	protected $_SSRegression		= 0; | ||||
|  | ||||
| 	protected $_SSResiduals			= 0; | ||||
|  | ||||
| 	protected $_DFResiduals			= 0; | ||||
|  | ||||
| 	protected $_F					= 0; | ||||
|  | ||||
| 	protected $_slope				= 0; | ||||
|  | ||||
| 	protected $_slopeSE				= 0; | ||||
|  | ||||
| 	protected $_intersect			= 0; | ||||
|  | ||||
| 	protected $_intersectSE			= 0; | ||||
|  | ||||
| 	protected $_Xoffset				= 0; | ||||
|  | ||||
| 	protected $_Yoffset				= 0; | ||||
|  | ||||
|  | ||||
| 	public function getError() { | ||||
| 		return $this->_error; | ||||
| 	}	//	function getBestFitType() | ||||
|  | ||||
|  | ||||
| 	public function getBestFitType() { | ||||
| 		return $this->_bestFitType; | ||||
| 	}	//	function getBestFitType() | ||||
|  | ||||
|  | ||||
| 	public function getValueOfYForX($xValue) { | ||||
| 		return False; | ||||
| 	}	//	function getValueOfYForX() | ||||
|  | ||||
|  | ||||
| 	public function getValueOfXForY($yValue) { | ||||
| 		return False; | ||||
| 	}	//	function getValueOfXForY() | ||||
|  | ||||
|  | ||||
| 	public function getXValues() { | ||||
| 		return $this->_xValues; | ||||
| 	}	//	function getValueOfXForY() | ||||
|  | ||||
|  | ||||
| 	public function getEquation($dp=0) { | ||||
| 		return False; | ||||
| 	}	//	function getEquation() | ||||
|  | ||||
|  | ||||
| 	public function getSlope($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_slope,$dp); | ||||
| 		} | ||||
| 		return $this->_slope; | ||||
| 	}	//	function getSlope() | ||||
|  | ||||
|  | ||||
| 	public function getSlopeSE($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_slopeSE,$dp); | ||||
| 		} | ||||
| 		return $this->_slopeSE; | ||||
| 	}	//	function getSlopeSE() | ||||
|  | ||||
|  | ||||
| 	public function getIntersect($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_intersect,$dp); | ||||
| 		} | ||||
| 		return $this->_intersect; | ||||
| 	}	//	function getIntersect() | ||||
|  | ||||
|  | ||||
| 	public function getIntersectSE($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_intersectSE,$dp); | ||||
| 		} | ||||
| 		return $this->_intersectSE; | ||||
| 	}	//	function getIntersectSE() | ||||
|  | ||||
|  | ||||
| 	public function getGoodnessOfFit($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_goodnessOfFit,$dp); | ||||
| 		} | ||||
| 		return $this->_goodnessOfFit; | ||||
| 	}	//	function getGoodnessOfFit() | ||||
|  | ||||
|  | ||||
| 	public function getGoodnessOfFitPercent($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_goodnessOfFit * 100,$dp); | ||||
| 		} | ||||
| 		return $this->_goodnessOfFit * 100; | ||||
| 	}	//	function getGoodnessOfFitPercent() | ||||
|  | ||||
|  | ||||
| 	public function getStdevOfResiduals($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_stdevOfResiduals,$dp); | ||||
| 		} | ||||
| 		return $this->_stdevOfResiduals; | ||||
| 	}	//	function getStdevOfResiduals() | ||||
|  | ||||
|  | ||||
| 	public function getSSRegression($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_SSRegression,$dp); | ||||
| 		} | ||||
| 		return $this->_SSRegression; | ||||
| 	}	//	function getSSRegression() | ||||
|  | ||||
|  | ||||
| 	public function getSSResiduals($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_SSResiduals,$dp); | ||||
| 		} | ||||
| 		return $this->_SSResiduals; | ||||
| 	}	//	function getSSResiduals() | ||||
|  | ||||
|  | ||||
| 	public function getDFResiduals($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_DFResiduals,$dp); | ||||
| 		} | ||||
| 		return $this->_DFResiduals; | ||||
| 	}	//	function getDFResiduals() | ||||
|  | ||||
|  | ||||
| 	public function getF($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_F,$dp); | ||||
| 		} | ||||
| 		return $this->_F; | ||||
| 	}	//	function getF() | ||||
|  | ||||
|  | ||||
| 	public function getCovariance($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_covariance,$dp); | ||||
| 		} | ||||
| 		return $this->_covariance; | ||||
| 	}	//	function getCovariance() | ||||
|  | ||||
|  | ||||
| 	public function getCorrelation($dp=0) { | ||||
| 		if ($dp != 0) { | ||||
| 			return round($this->_correlation,$dp); | ||||
| 		} | ||||
| 		return $this->_correlation; | ||||
| 	}	//	function getCorrelation() | ||||
|  | ||||
|  | ||||
| 	public function getYBestFitValues() { | ||||
| 		return $this->_yBestFitValues; | ||||
| 	}	//	function getYBestFitValues() | ||||
|  | ||||
|  | ||||
| 	protected function _calculateGoodnessOfFit($sumX,$sumY,$sumX2,$sumY2,$sumXY,$meanX,$meanY, $const) { | ||||
| 		$SSres = $SScov = $SScor = $SStot = $SSsex = 0.0; | ||||
| 		foreach($this->_xValues as $xKey => $xValue) { | ||||
| 			$bestFitY = $this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue); | ||||
|  | ||||
| 			$SSres += ($this->_yValues[$xKey] - $bestFitY) * ($this->_yValues[$xKey] - $bestFitY); | ||||
| 			if ($const) { | ||||
| 				$SStot += ($this->_yValues[$xKey] - $meanY) * ($this->_yValues[$xKey] - $meanY); | ||||
| 			} else { | ||||
| 				$SStot += $this->_yValues[$xKey] * $this->_yValues[$xKey]; | ||||
| 			} | ||||
| 			$SScov += ($this->_xValues[$xKey] - $meanX) * ($this->_yValues[$xKey] - $meanY); | ||||
| 			if ($const) { | ||||
| 				$SSsex += ($this->_xValues[$xKey] - $meanX) * ($this->_xValues[$xKey] - $meanX); | ||||
| 			} else { | ||||
| 				$SSsex += $this->_xValues[$xKey] * $this->_xValues[$xKey]; | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		$this->_SSResiduals = $SSres; | ||||
| 		$this->_DFResiduals = $this->_valueCount - 1 - $const; | ||||
|  | ||||
| 		if ($this->_DFResiduals == 0.0) { | ||||
| 			$this->_stdevOfResiduals = 0.0; | ||||
| 		} else { | ||||
| 			$this->_stdevOfResiduals = sqrt($SSres / $this->_DFResiduals); | ||||
| 		} | ||||
| 		if (($SStot == 0.0) || ($SSres == $SStot)) { | ||||
| 			$this->_goodnessOfFit = 1; | ||||
| 		} else { | ||||
| 			$this->_goodnessOfFit = 1 - ($SSres / $SStot); | ||||
| 		} | ||||
|  | ||||
| 		$this->_SSRegression = $this->_goodnessOfFit * $SStot; | ||||
| 		$this->_covariance = $SScov / $this->_valueCount; | ||||
| 		$this->_correlation = ($this->_valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->_valueCount * $sumX2 - pow($sumX,2)) * ($this->_valueCount * $sumY2 - pow($sumY,2))); | ||||
| 		$this->_slopeSE = $this->_stdevOfResiduals / sqrt($SSsex); | ||||
| 		$this->_intersectSE = $this->_stdevOfResiduals * sqrt(1 / ($this->_valueCount - ($sumX * $sumX) / $sumX2)); | ||||
| 		if ($this->_SSResiduals != 0.0) { | ||||
| 			if ($this->_DFResiduals == 0.0) { | ||||
| 				$this->_F = 0.0; | ||||
| 			} else { | ||||
| 				$this->_F = $this->_SSRegression / ($this->_SSResiduals / $this->_DFResiduals); | ||||
| 			} | ||||
| 		} else { | ||||
| 			if ($this->_DFResiduals == 0.0) { | ||||
| 				$this->_F = 0.0; | ||||
| 			} else { | ||||
| 				$this->_F = $this->_SSRegression / $this->_DFResiduals; | ||||
| 			} | ||||
| 		} | ||||
| 	}	//	function _calculateGoodnessOfFit() | ||||
|  | ||||
|  | ||||
| 	protected function _leastSquareFit($yValues, $xValues, $const) { | ||||
| 		// calculate sums | ||||
| 		$x_sum = array_sum($xValues); | ||||
| 		$y_sum = array_sum($yValues); | ||||
| 		$meanX = $x_sum / $this->_valueCount; | ||||
| 		$meanY = $y_sum / $this->_valueCount; | ||||
| 		$mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0; | ||||
| 		for($i = 0; $i < $this->_valueCount; ++$i) { | ||||
| 			$xy_sum += $xValues[$i] * $yValues[$i]; | ||||
| 			$xx_sum += $xValues[$i] * $xValues[$i]; | ||||
| 			$yy_sum += $yValues[$i] * $yValues[$i]; | ||||
|  | ||||
| 			if ($const) { | ||||
| 				$mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY); | ||||
| 				$mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX); | ||||
| 			} else { | ||||
| 				$mBase += $xValues[$i] * $yValues[$i]; | ||||
| 				$mDivisor += $xValues[$i] * $xValues[$i]; | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		// calculate slope | ||||
| //		$this->_slope = (($this->_valueCount * $xy_sum) - ($x_sum * $y_sum)) / (($this->_valueCount * $xx_sum) - ($x_sum * $x_sum)); | ||||
| 		$this->_slope = $mBase / $mDivisor; | ||||
|  | ||||
| 		// calculate intersect | ||||
| //		$this->_intersect = ($y_sum - ($this->_slope * $x_sum)) / $this->_valueCount; | ||||
| 		if ($const) { | ||||
| 			$this->_intersect = $meanY - ($this->_slope * $meanX); | ||||
| 		} else { | ||||
| 			$this->_intersect = 0; | ||||
| 		} | ||||
|  | ||||
| 		$this->_calculateGoodnessOfFit($x_sum,$y_sum,$xx_sum,$yy_sum,$xy_sum,$meanX,$meanY,$const); | ||||
| 	}	//	function _leastSquareFit() | ||||
|  | ||||
|  | ||||
| 	function __construct($yValues, $xValues=array(), $const=True) { | ||||
| 		//	Calculate number of points | ||||
| 		$nY = count($yValues); | ||||
| 		$nX = count($xValues); | ||||
|  | ||||
| 		//	Define X Values if necessary | ||||
| 		if ($nX == 0) { | ||||
| 			$xValues = range(1,$nY); | ||||
| 			$nX = $nY; | ||||
| 		} elseif ($nY != $nX) { | ||||
| 			//	Ensure both arrays of points are the same size | ||||
| 			$this->_error = True; | ||||
| 			return False; | ||||
| 		} | ||||
|  | ||||
| 		$this->_valueCount = $nY; | ||||
| 		$this->_xValues = $xValues; | ||||
| 		$this->_yValues = $yValues; | ||||
| 	}	//	function __construct() | ||||
|  | ||||
| }	//	class bestFit | ||||
		Reference in New Issue
	
	Block a user