Clean
This commit is contained in:
		| @ -1,234 +0,0 @@ | ||||
| <?php | ||||
| /** | ||||
|  *	@package JAMA | ||||
|  * | ||||
|  *	For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n | ||||
|  *	orthogonal matrix Q and an n-by-n upper triangular matrix R so that | ||||
|  *	A = Q*R. | ||||
|  * | ||||
|  *	The QR decompostion always exists, even if the matrix does not have | ||||
|  *	full rank, so the constructor will never fail.  The primary use of the | ||||
|  *	QR decomposition is in the least squares solution of nonsquare systems | ||||
|  *	of simultaneous linear equations.  This will fail if isFullRank() | ||||
|  *	returns false. | ||||
|  * | ||||
|  *	@author  Paul Meagher | ||||
|  *	@license PHP v3.0 | ||||
|  *	@version 1.1 | ||||
|  */ | ||||
| class PHPExcel_Shared_JAMA_QRDecomposition { | ||||
|  | ||||
| 	const MatrixRankException	= "Can only perform operation on full-rank matrix."; | ||||
|  | ||||
| 	/** | ||||
| 	 *	Array for internal storage of decomposition. | ||||
| 	 *	@var array | ||||
| 	 */ | ||||
| 	private $QR = array(); | ||||
|  | ||||
| 	/** | ||||
| 	 *	Row dimension. | ||||
| 	 *	@var integer | ||||
| 	 */ | ||||
| 	private $m; | ||||
|  | ||||
| 	/** | ||||
| 	*	Column dimension. | ||||
| 	*	@var integer | ||||
| 	*/ | ||||
| 	private $n; | ||||
|  | ||||
| 	/** | ||||
| 	 *	Array for internal storage of diagonal of R. | ||||
| 	 *	@var  array | ||||
| 	 */ | ||||
| 	private $Rdiag = array(); | ||||
|  | ||||
|  | ||||
| 	/** | ||||
| 	 *	QR Decomposition computed by Householder reflections. | ||||
| 	 * | ||||
| 	 *	@param matrix $A Rectangular matrix | ||||
| 	 *	@return Structure to access R and the Householder vectors and compute Q. | ||||
| 	 */ | ||||
| 	public function __construct($A) { | ||||
| 		if($A instanceof PHPExcel_Shared_JAMA_Matrix) { | ||||
| 			// Initialize. | ||||
| 			$this->QR = $A->getArrayCopy(); | ||||
| 			$this->m  = $A->getRowDimension(); | ||||
| 			$this->n  = $A->getColumnDimension(); | ||||
| 			// Main loop. | ||||
| 			for ($k = 0; $k < $this->n; ++$k) { | ||||
| 				// Compute 2-norm of k-th column without under/overflow. | ||||
| 				$nrm = 0.0; | ||||
| 				for ($i = $k; $i < $this->m; ++$i) { | ||||
| 					$nrm = hypo($nrm, $this->QR[$i][$k]); | ||||
| 				} | ||||
| 				if ($nrm != 0.0) { | ||||
| 					// Form k-th Householder vector. | ||||
| 					if ($this->QR[$k][$k] < 0) { | ||||
| 						$nrm = -$nrm; | ||||
| 					} | ||||
| 					for ($i = $k; $i < $this->m; ++$i) { | ||||
| 						$this->QR[$i][$k] /= $nrm; | ||||
| 					} | ||||
| 					$this->QR[$k][$k] += 1.0; | ||||
| 					// Apply transformation to remaining columns. | ||||
| 					for ($j = $k+1; $j < $this->n; ++$j) { | ||||
| 						$s = 0.0; | ||||
| 						for ($i = $k; $i < $this->m; ++$i) { | ||||
| 							$s += $this->QR[$i][$k] * $this->QR[$i][$j]; | ||||
| 						} | ||||
| 						$s = -$s/$this->QR[$k][$k]; | ||||
| 						for ($i = $k; $i < $this->m; ++$i) { | ||||
| 							$this->QR[$i][$j] += $s * $this->QR[$i][$k]; | ||||
| 						} | ||||
| 					} | ||||
| 				} | ||||
| 				$this->Rdiag[$k] = -$nrm; | ||||
| 			} | ||||
| 		} else { | ||||
| 			throw new Exception(PHPExcel_Shared_JAMA_Matrix::ArgumentTypeException); | ||||
| 		} | ||||
| 	}	//	function __construct() | ||||
|  | ||||
|  | ||||
| 	/** | ||||
| 	 *	Is the matrix full rank? | ||||
| 	 * | ||||
| 	 *	@return boolean true if R, and hence A, has full rank, else false. | ||||
| 	 */ | ||||
| 	public function isFullRank() { | ||||
| 		for ($j = 0; $j < $this->n; ++$j) { | ||||
| 			if ($this->Rdiag[$j] == 0) { | ||||
| 				return false; | ||||
| 			} | ||||
| 		} | ||||
| 		return true; | ||||
| 	}	//	function isFullRank() | ||||
|  | ||||
|  | ||||
| 	/** | ||||
| 	 *	Return the Householder vectors | ||||
| 	 * | ||||
| 	 *	@return Matrix Lower trapezoidal matrix whose columns define the reflections | ||||
| 	 */ | ||||
| 	public function getH() { | ||||
| 		for ($i = 0; $i < $this->m; ++$i) { | ||||
| 			for ($j = 0; $j < $this->n; ++$j) { | ||||
| 				if ($i >= $j) { | ||||
| 					$H[$i][$j] = $this->QR[$i][$j]; | ||||
| 				} else { | ||||
| 					$H[$i][$j] = 0.0; | ||||
| 				} | ||||
| 			} | ||||
| 		} | ||||
| 		return new PHPExcel_Shared_JAMA_Matrix($H); | ||||
| 	}	//	function getH() | ||||
|  | ||||
|  | ||||
| 	/** | ||||
| 	 *	Return the upper triangular factor | ||||
| 	 * | ||||
| 	 *	@return Matrix upper triangular factor | ||||
| 	 */ | ||||
| 	public function getR() { | ||||
| 		for ($i = 0; $i < $this->n; ++$i) { | ||||
| 			for ($j = 0; $j < $this->n; ++$j) { | ||||
| 				if ($i < $j) { | ||||
| 					$R[$i][$j] = $this->QR[$i][$j]; | ||||
| 				} elseif ($i == $j) { | ||||
| 					$R[$i][$j] = $this->Rdiag[$i]; | ||||
| 				} else { | ||||
| 					$R[$i][$j] = 0.0; | ||||
| 				} | ||||
| 			} | ||||
| 		} | ||||
| 		return new PHPExcel_Shared_JAMA_Matrix($R); | ||||
| 	}	//	function getR() | ||||
|  | ||||
|  | ||||
| 	/** | ||||
| 	 *	Generate and return the (economy-sized) orthogonal factor | ||||
| 	 * | ||||
| 	 *	@return Matrix orthogonal factor | ||||
| 	 */ | ||||
| 	public function getQ() { | ||||
| 		for ($k = $this->n-1; $k >= 0; --$k) { | ||||
| 			for ($i = 0; $i < $this->m; ++$i) { | ||||
| 				$Q[$i][$k] = 0.0; | ||||
| 			} | ||||
| 			$Q[$k][$k] = 1.0; | ||||
| 			for ($j = $k; $j < $this->n; ++$j) { | ||||
| 				if ($this->QR[$k][$k] != 0) { | ||||
| 					$s = 0.0; | ||||
| 					for ($i = $k; $i < $this->m; ++$i) { | ||||
| 						$s += $this->QR[$i][$k] * $Q[$i][$j]; | ||||
| 					} | ||||
| 					$s = -$s/$this->QR[$k][$k]; | ||||
| 					for ($i = $k; $i < $this->m; ++$i) { | ||||
| 						$Q[$i][$j] += $s * $this->QR[$i][$k]; | ||||
| 					} | ||||
| 				} | ||||
| 			} | ||||
| 		} | ||||
| 		/* | ||||
| 		for($i = 0; $i < count($Q); ++$i) { | ||||
| 			for($j = 0; $j < count($Q); ++$j) { | ||||
| 				if(! isset($Q[$i][$j]) ) { | ||||
| 					$Q[$i][$j] = 0; | ||||
| 				} | ||||
| 			} | ||||
| 		} | ||||
| 		*/ | ||||
| 		return new PHPExcel_Shared_JAMA_Matrix($Q); | ||||
| 	}	//	function getQ() | ||||
|  | ||||
|  | ||||
| 	/** | ||||
| 	 *	Least squares solution of A*X = B | ||||
| 	 * | ||||
| 	 *	@param Matrix $B A Matrix with as many rows as A and any number of columns. | ||||
| 	 *	@return Matrix Matrix that minimizes the two norm of Q*R*X-B. | ||||
| 	 */ | ||||
| 	public function solve($B) { | ||||
| 		if ($B->getRowDimension() == $this->m) { | ||||
| 			if ($this->isFullRank()) { | ||||
| 				// Copy right hand side | ||||
| 				$nx = $B->getColumnDimension(); | ||||
| 				$X  = $B->getArrayCopy(); | ||||
| 				// Compute Y = transpose(Q)*B | ||||
| 				for ($k = 0; $k < $this->n; ++$k) { | ||||
| 					for ($j = 0; $j < $nx; ++$j) { | ||||
| 						$s = 0.0; | ||||
| 						for ($i = $k; $i < $this->m; ++$i) { | ||||
| 							$s += $this->QR[$i][$k] * $X[$i][$j]; | ||||
| 						} | ||||
| 						$s = -$s/$this->QR[$k][$k]; | ||||
| 						for ($i = $k; $i < $this->m; ++$i) { | ||||
| 							$X[$i][$j] += $s * $this->QR[$i][$k]; | ||||
| 						} | ||||
| 					} | ||||
| 				} | ||||
| 				// Solve R*X = Y; | ||||
| 				for ($k = $this->n-1; $k >= 0; --$k) { | ||||
| 					for ($j = 0; $j < $nx; ++$j) { | ||||
| 						$X[$k][$j] /= $this->Rdiag[$k]; | ||||
| 					} | ||||
| 					for ($i = 0; $i < $k; ++$i) { | ||||
| 						for ($j = 0; $j < $nx; ++$j) { | ||||
| 							$X[$i][$j] -= $X[$k][$j]* $this->QR[$i][$k]; | ||||
| 						} | ||||
| 					} | ||||
| 				} | ||||
| 				$X = new PHPExcel_Shared_JAMA_Matrix($X); | ||||
| 				return ($X->getMatrix(0, $this->n-1, 0, $nx)); | ||||
| 			} else { | ||||
| 				throw new Exception(self::MatrixRankException); | ||||
| 			} | ||||
| 		} else { | ||||
| 			throw new Exception(PHPExcel_Shared_JAMA_Matrix::MatrixDimensionException); | ||||
| 		} | ||||
| 	}	//	function solve() | ||||
|  | ||||
| }	//	PHPExcel_Shared_JAMA_class QRDecomposition | ||||
		Reference in New Issue
	
	Block a user