Add version files and new GIF images for UI components

This commit is contained in:
2025-04-03 06:26:44 +07:00
commit 663c28a2ea
5219 changed files with 772528 additions and 0 deletions

View File

@ -0,0 +1,16 @@
Mar 1, 2005 11:15 AST by PM
+ For consistency, renamed Math.php to Maths.java, utils to util,
tests to test, docs to doc -
+ Removed conditional logic from top of Matrix class.
+ Switched to using hypo function in Maths.php for all php-hypot calls.
NOTE TO SELF: Need to make sure that all decompositions have been
switched over to using the bundled hypo.
Feb 25, 2005 at 10:00 AST by PM
+ Recommend using simpler Error.php instead of JAMA_Error.php but
can be persuaded otherwise.

View File

@ -0,0 +1,149 @@
<?php
/**
* @package JAMA
*
* Cholesky decomposition class
*
* For a symmetric, positive definite matrix A, the Cholesky decomposition
* is an lower triangular matrix L so that A = L*L'.
*
* If the matrix is not symmetric or positive definite, the constructor
* returns a partial decomposition and sets an internal flag that may
* be queried by the isSPD() method.
*
* @author Paul Meagher
* @author Michael Bommarito
* @version 1.2
*/
class CholeskyDecomposition {
/**
* Decomposition storage
* @var array
* @access private
*/
private $L = array();
/**
* Matrix row and column dimension
* @var int
* @access private
*/
private $m;
/**
* Symmetric positive definite flag
* @var boolean
* @access private
*/
private $isspd = true;
/**
* CholeskyDecomposition
*
* Class constructor - decomposes symmetric positive definite matrix
* @param mixed Matrix square symmetric positive definite matrix
*/
public function __construct($A = null) {
if ($A instanceof Matrix) {
$this->L = $A->getArray();
$this->m = $A->getRowDimension();
for($i = 0; $i < $this->m; ++$i) {
for($j = $i; $j < $this->m; ++$j) {
for($sum = $this->L[$i][$j], $k = $i - 1; $k >= 0; --$k) {
$sum -= $this->L[$i][$k] * $this->L[$j][$k];
}
if ($i == $j) {
if ($sum >= 0) {
$this->L[$i][$i] = sqrt($sum);
} else {
$this->isspd = false;
}
} else {
if ($this->L[$i][$i] != 0) {
$this->L[$j][$i] = $sum / $this->L[$i][$i];
}
}
}
for ($k = $i+1; $k < $this->m; ++$k) {
$this->L[$i][$k] = 0.0;
}
}
} else {
throw new Exception(JAMAError(ArgumentTypeException));
}
} // function __construct()
/**
* Is the matrix symmetric and positive definite?
*
* @return boolean
*/
public function isSPD() {
return $this->isspd;
} // function isSPD()
/**
* getL
*
* Return triangular factor.
* @return Matrix Lower triangular matrix
*/
public function getL() {
return new Matrix($this->L);
} // function getL()
/**
* Solve A*X = B
*
* @param $B Row-equal matrix
* @return Matrix L * L' * X = B
*/
public function solve($B = null) {
if ($B instanceof Matrix) {
if ($B->getRowDimension() == $this->m) {
if ($this->isspd) {
$X = $B->getArrayCopy();
$nx = $B->getColumnDimension();
for ($k = 0; $k < $this->m; ++$k) {
for ($i = $k + 1; $i < $this->m; ++$i) {
for ($j = 0; $j < $nx; ++$j) {
$X[$i][$j] -= $X[$k][$j] * $this->L[$i][$k];
}
}
for ($j = 0; $j < $nx; ++$j) {
$X[$k][$j] /= $this->L[$k][$k];
}
}
for ($k = $this->m - 1; $k >= 0; --$k) {
for ($j = 0; $j < $nx; ++$j) {
$X[$k][$j] /= $this->L[$k][$k];
}
for ($i = 0; $i < $k; ++$i) {
for ($j = 0; $j < $nx; ++$j) {
$X[$i][$j] -= $X[$k][$j] * $this->L[$k][$i];
}
}
}
return new Matrix($X, $this->m, $nx);
} else {
throw new Exception(JAMAError(MatrixSPDException));
}
} else {
throw new Exception(JAMAError(MatrixDimensionException));
}
} else {
throw new Exception(JAMAError(ArgumentTypeException));
}
} // function solve()
} // class CholeskyDecomposition

View File

@ -0,0 +1,862 @@
<?php
/**
* @package JAMA
*
* Class to obtain eigenvalues and eigenvectors of a real matrix.
*
* If A is symmetric, then A = V*D*V' where the eigenvalue matrix D
* is diagonal and the eigenvector matrix V is orthogonal (i.e.
* A = V.times(D.times(V.transpose())) and V.times(V.transpose())
* equals the identity matrix).
*
* If A is not symmetric, then the eigenvalue matrix D is block diagonal
* with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
* lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. The
* columns of V represent the eigenvectors in the sense that A*V = V*D,
* i.e. A.times(V) equals V.times(D). The matrix V may be badly
* conditioned, or even singular, so the validity of the equation
* A = V*D*inverse(V) depends upon V.cond().
*
* @author Paul Meagher
* @license PHP v3.0
* @version 1.1
*/
class EigenvalueDecomposition {
/**
* Row and column dimension (square matrix).
* @var int
*/
private $n;
/**
* Internal symmetry flag.
* @var int
*/
private $issymmetric;
/**
* Arrays for internal storage of eigenvalues.
* @var array
*/
private $d = array();
private $e = array();
/**
* Array for internal storage of eigenvectors.
* @var array
*/
private $V = array();
/**
* Array for internal storage of nonsymmetric Hessenberg form.
* @var array
*/
private $H = array();
/**
* Working storage for nonsymmetric algorithm.
* @var array
*/
private $ort;
/**
* Used for complex scalar division.
* @var float
*/
private $cdivr;
private $cdivi;
/**
* Symmetric Householder reduction to tridiagonal form.
*
* @access private
*/
private function tred2 () {
// This is derived from the Algol procedures tred2 by
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
// Fortran subroutine in EISPACK.
$this->d = $this->V[$this->n-1];
// Householder reduction to tridiagonal form.
for ($i = $this->n-1; $i > 0; --$i) {
$i_ = $i -1;
// Scale to avoid under/overflow.
$h = $scale = 0.0;
$scale += array_sum(array_map(abs, $this->d));
if ($scale == 0.0) {
$this->e[$i] = $this->d[$i_];
$this->d = array_slice($this->V[$i_], 0, $i_);
for ($j = 0; $j < $i; ++$j) {
$this->V[$j][$i] = $this->V[$i][$j] = 0.0;
}
} else {
// Generate Householder vector.
for ($k = 0; $k < $i; ++$k) {
$this->d[$k] /= $scale;
$h += pow($this->d[$k], 2);
}
$f = $this->d[$i_];
$g = sqrt($h);
if ($f > 0) {
$g = -$g;
}
$this->e[$i] = $scale * $g;
$h = $h - $f * $g;
$this->d[$i_] = $f - $g;
for ($j = 0; $j < $i; ++$j) {
$this->e[$j] = 0.0;
}
// Apply similarity transformation to remaining columns.
for ($j = 0; $j < $i; ++$j) {
$f = $this->d[$j];
$this->V[$j][$i] = $f;
$g = $this->e[$j] + $this->V[$j][$j] * $f;
for ($k = $j+1; $k <= $i_; ++$k) {
$g += $this->V[$k][$j] * $this->d[$k];
$this->e[$k] += $this->V[$k][$j] * $f;
}
$this->e[$j] = $g;
}
$f = 0.0;
for ($j = 0; $j < $i; ++$j) {
$this->e[$j] /= $h;
$f += $this->e[$j] * $this->d[$j];
}
$hh = $f / (2 * $h);
for ($j=0; $j < $i; ++$j) {
$this->e[$j] -= $hh * $this->d[$j];
}
for ($j = 0; $j < $i; ++$j) {
$f = $this->d[$j];
$g = $this->e[$j];
for ($k = $j; $k <= $i_; ++$k) {
$this->V[$k][$j] -= ($f * $this->e[$k] + $g * $this->d[$k]);
}
$this->d[$j] = $this->V[$i-1][$j];
$this->V[$i][$j] = 0.0;
}
}
$this->d[$i] = $h;
}
// Accumulate transformations.
for ($i = 0; $i < $this->n-1; ++$i) {
$this->V[$this->n-1][$i] = $this->V[$i][$i];
$this->V[$i][$i] = 1.0;
$h = $this->d[$i+1];
if ($h != 0.0) {
for ($k = 0; $k <= $i; ++$k) {
$this->d[$k] = $this->V[$k][$i+1] / $h;
}
for ($j = 0; $j <= $i; ++$j) {
$g = 0.0;
for ($k = 0; $k <= $i; ++$k) {
$g += $this->V[$k][$i+1] * $this->V[$k][$j];
}
for ($k = 0; $k <= $i; ++$k) {
$this->V[$k][$j] -= $g * $this->d[$k];
}
}
}
for ($k = 0; $k <= $i; ++$k) {
$this->V[$k][$i+1] = 0.0;
}
}
$this->d = $this->V[$this->n-1];
$this->V[$this->n-1] = array_fill(0, $j, 0.0);
$this->V[$this->n-1][$this->n-1] = 1.0;
$this->e[0] = 0.0;
}
/**
* Symmetric tridiagonal QL algorithm.
*
* This is derived from the Algol procedures tql2, by
* Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
* Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
* Fortran subroutine in EISPACK.
*
* @access private
*/
private function tql2() {
for ($i = 1; $i < $this->n; ++$i) {
$this->e[$i-1] = $this->e[$i];
}
$this->e[$this->n-1] = 0.0;
$f = 0.0;
$tst1 = 0.0;
$eps = pow(2.0,-52.0);
for ($l = 0; $l < $this->n; ++$l) {
// Find small subdiagonal element
$tst1 = max($tst1, abs($this->d[$l]) + abs($this->e[$l]));
$m = $l;
while ($m < $this->n) {
if (abs($this->e[$m]) <= $eps * $tst1)
break;
++$m;
}
// If m == l, $this->d[l] is an eigenvalue,
// otherwise, iterate.
if ($m > $l) {
$iter = 0;
do {
// Could check iteration count here.
$iter += 1;
// Compute implicit shift
$g = $this->d[$l];
$p = ($this->d[$l+1] - $g) / (2.0 * $this->e[$l]);
$r = hypo($p, 1.0);
if ($p < 0)
$r *= -1;
$this->d[$l] = $this->e[$l] / ($p + $r);
$this->d[$l+1] = $this->e[$l] * ($p + $r);
$dl1 = $this->d[$l+1];
$h = $g - $this->d[$l];
for ($i = $l + 2; $i < $this->n; ++$i)
$this->d[$i] -= $h;
$f += $h;
// Implicit QL transformation.
$p = $this->d[$m];
$c = 1.0;
$c2 = $c3 = $c;
$el1 = $this->e[$l + 1];
$s = $s2 = 0.0;
for ($i = $m-1; $i >= $l; --$i) {
$c3 = $c2;
$c2 = $c;
$s2 = $s;
$g = $c * $this->e[$i];
$h = $c * $p;
$r = hypo($p, $this->e[$i]);
$this->e[$i+1] = $s * $r;
$s = $this->e[$i] / $r;
$c = $p / $r;
$p = $c * $this->d[$i] - $s * $g;
$this->d[$i+1] = $h + $s * ($c * $g + $s * $this->d[$i]);
// Accumulate transformation.
for ($k = 0; $k < $this->n; ++$k) {
$h = $this->V[$k][$i+1];
$this->V[$k][$i+1] = $s * $this->V[$k][$i] + $c * $h;
$this->V[$k][$i] = $c * $this->V[$k][$i] - $s * $h;
}
}
$p = -$s * $s2 * $c3 * $el1 * $this->e[$l] / $dl1;
$this->e[$l] = $s * $p;
$this->d[$l] = $c * $p;
// Check for convergence.
} while (abs($this->e[$l]) > $eps * $tst1);
}
$this->d[$l] = $this->d[$l] + $f;
$this->e[$l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for ($i = 0; $i < $this->n - 1; ++$i) {
$k = $i;
$p = $this->d[$i];
for ($j = $i+1; $j < $this->n; ++$j) {
if ($this->d[$j] < $p) {
$k = $j;
$p = $this->d[$j];
}
}
if ($k != $i) {
$this->d[$k] = $this->d[$i];
$this->d[$i] = $p;
for ($j = 0; $j < $this->n; ++$j) {
$p = $this->V[$j][$i];
$this->V[$j][$i] = $this->V[$j][$k];
$this->V[$j][$k] = $p;
}
}
}
}
/**
* Nonsymmetric reduction to Hessenberg form.
*
* This is derived from the Algol procedures orthes and ortran,
* by Martin and Wilkinson, Handbook for Auto. Comp.,
* Vol.ii-Linear Algebra, and the corresponding
* Fortran subroutines in EISPACK.
*
* @access private
*/
private function orthes () {
$low = 0;
$high = $this->n-1;
for ($m = $low+1; $m <= $high-1; ++$m) {
// Scale column.
$scale = 0.0;
for ($i = $m; $i <= $high; ++$i) {
$scale = $scale + abs($this->H[$i][$m-1]);
}
if ($scale != 0.0) {
// Compute Householder transformation.
$h = 0.0;
for ($i = $high; $i >= $m; --$i) {
$this->ort[$i] = $this->H[$i][$m-1] / $scale;
$h += $this->ort[$i] * $this->ort[$i];
}
$g = sqrt($h);
if ($this->ort[$m] > 0) {
$g *= -1;
}
$h -= $this->ort[$m] * $g;
$this->ort[$m] -= $g;
// Apply Householder similarity transformation
// H = (I -u * u' / h) * H * (I -u * u') / h)
for ($j = $m; $j < $this->n; ++$j) {
$f = 0.0;
for ($i = $high; $i >= $m; --$i) {
$f += $this->ort[$i] * $this->H[$i][$j];
}
$f /= $h;
for ($i = $m; $i <= $high; ++$i) {
$this->H[$i][$j] -= $f * $this->ort[$i];
}
}
for ($i = 0; $i <= $high; ++$i) {
$f = 0.0;
for ($j = $high; $j >= $m; --$j) {
$f += $this->ort[$j] * $this->H[$i][$j];
}
$f = $f / $h;
for ($j = $m; $j <= $high; ++$j) {
$this->H[$i][$j] -= $f * $this->ort[$j];
}
}
$this->ort[$m] = $scale * $this->ort[$m];
$this->H[$m][$m-1] = $scale * $g;
}
}
// Accumulate transformations (Algol's ortran).
for ($i = 0; $i < $this->n; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$this->V[$i][$j] = ($i == $j ? 1.0 : 0.0);
}
}
for ($m = $high-1; $m >= $low+1; --$m) {
if ($this->H[$m][$m-1] != 0.0) {
for ($i = $m+1; $i <= $high; ++$i) {
$this->ort[$i] = $this->H[$i][$m-1];
}
for ($j = $m; $j <= $high; ++$j) {
$g = 0.0;
for ($i = $m; $i <= $high; ++$i) {
$g += $this->ort[$i] * $this->V[$i][$j];
}
// Double division avoids possible underflow
$g = ($g / $this->ort[$m]) / $this->H[$m][$m-1];
for ($i = $m; $i <= $high; ++$i) {
$this->V[$i][$j] += $g * $this->ort[$i];
}
}
}
}
}
/**
* Performs complex division.
*
* @access private
*/
private function cdiv($xr, $xi, $yr, $yi) {
if (abs($yr) > abs($yi)) {
$r = $yi / $yr;
$d = $yr + $r * $yi;
$this->cdivr = ($xr + $r * $xi) / $d;
$this->cdivi = ($xi - $r * $xr) / $d;
} else {
$r = $yr / $yi;
$d = $yi + $r * $yr;
$this->cdivr = ($r * $xr + $xi) / $d;
$this->cdivi = ($r * $xi - $xr) / $d;
}
}
/**
* Nonsymmetric reduction from Hessenberg to real Schur form.
*
* Code is derived from the Algol procedure hqr2,
* by Martin and Wilkinson, Handbook for Auto. Comp.,
* Vol.ii-Linear Algebra, and the corresponding
* Fortran subroutine in EISPACK.
*
* @access private
*/
private function hqr2 () {
// Initialize
$nn = $this->n;
$n = $nn - 1;
$low = 0;
$high = $nn - 1;
$eps = pow(2.0, -52.0);
$exshift = 0.0;
$p = $q = $r = $s = $z = 0;
// Store roots isolated by balanc and compute matrix norm
$norm = 0.0;
for ($i = 0; $i < $nn; ++$i) {
if (($i < $low) OR ($i > $high)) {
$this->d[$i] = $this->H[$i][$i];
$this->e[$i] = 0.0;
}
for ($j = max($i-1, 0); $j < $nn; ++$j) {
$norm = $norm + abs($this->H[$i][$j]);
}
}
// Outer loop over eigenvalue index
$iter = 0;
while ($n >= $low) {
// Look for single small sub-diagonal element
$l = $n;
while ($l > $low) {
$s = abs($this->H[$l-1][$l-1]) + abs($this->H[$l][$l]);
if ($s == 0.0) {
$s = $norm;
}
if (abs($this->H[$l][$l-1]) < $eps * $s) {
break;
}
--$l;
}
// Check for convergence
// One root found
if ($l == $n) {
$this->H[$n][$n] = $this->H[$n][$n] + $exshift;
$this->d[$n] = $this->H[$n][$n];
$this->e[$n] = 0.0;
--$n;
$iter = 0;
// Two roots found
} else if ($l == $n-1) {
$w = $this->H[$n][$n-1] * $this->H[$n-1][$n];
$p = ($this->H[$n-1][$n-1] - $this->H[$n][$n]) / 2.0;
$q = $p * $p + $w;
$z = sqrt(abs($q));
$this->H[$n][$n] = $this->H[$n][$n] + $exshift;
$this->H[$n-1][$n-1] = $this->H[$n-1][$n-1] + $exshift;
$x = $this->H[$n][$n];
// Real pair
if ($q >= 0) {
if ($p >= 0) {
$z = $p + $z;
} else {
$z = $p - $z;
}
$this->d[$n-1] = $x + $z;
$this->d[$n] = $this->d[$n-1];
if ($z != 0.0) {
$this->d[$n] = $x - $w / $z;
}
$this->e[$n-1] = 0.0;
$this->e[$n] = 0.0;
$x = $this->H[$n][$n-1];
$s = abs($x) + abs($z);
$p = $x / $s;
$q = $z / $s;
$r = sqrt($p * $p + $q * $q);
$p = $p / $r;
$q = $q / $r;
// Row modification
for ($j = $n-1; $j < $nn; ++$j) {
$z = $this->H[$n-1][$j];
$this->H[$n-1][$j] = $q * $z + $p * $this->H[$n][$j];
$this->H[$n][$j] = $q * $this->H[$n][$j] - $p * $z;
}
// Column modification
for ($i = 0; $i <= n; ++$i) {
$z = $this->H[$i][$n-1];
$this->H[$i][$n-1] = $q * $z + $p * $this->H[$i][$n];
$this->H[$i][$n] = $q * $this->H[$i][$n] - $p * $z;
}
// Accumulate transformations
for ($i = $low; $i <= $high; ++$i) {
$z = $this->V[$i][$n-1];
$this->V[$i][$n-1] = $q * $z + $p * $this->V[$i][$n];
$this->V[$i][$n] = $q * $this->V[$i][$n] - $p * $z;
}
// Complex pair
} else {
$this->d[$n-1] = $x + $p;
$this->d[$n] = $x + $p;
$this->e[$n-1] = $z;
$this->e[$n] = -$z;
}
$n = $n - 2;
$iter = 0;
// No convergence yet
} else {
// Form shift
$x = $this->H[$n][$n];
$y = 0.0;
$w = 0.0;
if ($l < $n) {
$y = $this->H[$n-1][$n-1];
$w = $this->H[$n][$n-1] * $this->H[$n-1][$n];
}
// Wilkinson's original ad hoc shift
if ($iter == 10) {
$exshift += $x;
for ($i = $low; $i <= $n; ++$i) {
$this->H[$i][$i] -= $x;
}
$s = abs($this->H[$n][$n-1]) + abs($this->H[$n-1][$n-2]);
$x = $y = 0.75 * $s;
$w = -0.4375 * $s * $s;
}
// MATLAB's new ad hoc shift
if ($iter == 30) {
$s = ($y - $x) / 2.0;
$s = $s * $s + $w;
if ($s > 0) {
$s = sqrt($s);
if ($y < $x) {
$s = -$s;
}
$s = $x - $w / (($y - $x) / 2.0 + $s);
for ($i = $low; $i <= $n; ++$i) {
$this->H[$i][$i] -= $s;
}
$exshift += $s;
$x = $y = $w = 0.964;
}
}
// Could check iteration count here.
$iter = $iter + 1;
// Look for two consecutive small sub-diagonal elements
$m = $n - 2;
while ($m >= $l) {
$z = $this->H[$m][$m];
$r = $x - $z;
$s = $y - $z;
$p = ($r * $s - $w) / $this->H[$m+1][$m] + $this->H[$m][$m+1];
$q = $this->H[$m+1][$m+1] - $z - $r - $s;
$r = $this->H[$m+2][$m+1];
$s = abs($p) + abs($q) + abs($r);
$p = $p / $s;
$q = $q / $s;
$r = $r / $s;
if ($m == $l) {
break;
}
if (abs($this->H[$m][$m-1]) * (abs($q) + abs($r)) <
$eps * (abs($p) * (abs($this->H[$m-1][$m-1]) + abs($z) + abs($this->H[$m+1][$m+1])))) {
break;
}
--$m;
}
for ($i = $m + 2; $i <= $n; ++$i) {
$this->H[$i][$i-2] = 0.0;
if ($i > $m+2) {
$this->H[$i][$i-3] = 0.0;
}
}
// Double QR step involving rows l:n and columns m:n
for ($k = $m; $k <= $n-1; ++$k) {
$notlast = ($k != $n-1);
if ($k != $m) {
$p = $this->H[$k][$k-1];
$q = $this->H[$k+1][$k-1];
$r = ($notlast ? $this->H[$k+2][$k-1] : 0.0);
$x = abs($p) + abs($q) + abs($r);
if ($x != 0.0) {
$p = $p / $x;
$q = $q / $x;
$r = $r / $x;
}
}
if ($x == 0.0) {
break;
}
$s = sqrt($p * $p + $q * $q + $r * $r);
if ($p < 0) {
$s = -$s;
}
if ($s != 0) {
if ($k != $m) {
$this->H[$k][$k-1] = -$s * $x;
} elseif ($l != $m) {
$this->H[$k][$k-1] = -$this->H[$k][$k-1];
}
$p = $p + $s;
$x = $p / $s;
$y = $q / $s;
$z = $r / $s;
$q = $q / $p;
$r = $r / $p;
// Row modification
for ($j = $k; $j < $nn; ++$j) {
$p = $this->H[$k][$j] + $q * $this->H[$k+1][$j];
if ($notlast) {
$p = $p + $r * $this->H[$k+2][$j];
$this->H[$k+2][$j] = $this->H[$k+2][$j] - $p * $z;
}
$this->H[$k][$j] = $this->H[$k][$j] - $p * $x;
$this->H[$k+1][$j] = $this->H[$k+1][$j] - $p * $y;
}
// Column modification
for ($i = 0; $i <= min($n, $k+3); ++$i) {
$p = $x * $this->H[$i][$k] + $y * $this->H[$i][$k+1];
if ($notlast) {
$p = $p + $z * $this->H[$i][$k+2];
$this->H[$i][$k+2] = $this->H[$i][$k+2] - $p * $r;
}
$this->H[$i][$k] = $this->H[$i][$k] - $p;
$this->H[$i][$k+1] = $this->H[$i][$k+1] - $p * $q;
}
// Accumulate transformations
for ($i = $low; $i <= $high; ++$i) {
$p = $x * $this->V[$i][$k] + $y * $this->V[$i][$k+1];
if ($notlast) {
$p = $p + $z * $this->V[$i][$k+2];
$this->V[$i][$k+2] = $this->V[$i][$k+2] - $p * $r;
}
$this->V[$i][$k] = $this->V[$i][$k] - $p;
$this->V[$i][$k+1] = $this->V[$i][$k+1] - $p * $q;
}
} // ($s != 0)
} // k loop
} // check convergence
} // while ($n >= $low)
// Backsubstitute to find vectors of upper triangular form
if ($norm == 0.0) {
return;
}
for ($n = $nn-1; $n >= 0; --$n) {
$p = $this->d[$n];
$q = $this->e[$n];
// Real vector
if ($q == 0) {
$l = $n;
$this->H[$n][$n] = 1.0;
for ($i = $n-1; $i >= 0; --$i) {
$w = $this->H[$i][$i] - $p;
$r = 0.0;
for ($j = $l; $j <= $n; ++$j) {
$r = $r + $this->H[$i][$j] * $this->H[$j][$n];
}
if ($this->e[$i] < 0.0) {
$z = $w;
$s = $r;
} else {
$l = $i;
if ($this->e[$i] == 0.0) {
if ($w != 0.0) {
$this->H[$i][$n] = -$r / $w;
} else {
$this->H[$i][$n] = -$r / ($eps * $norm);
}
// Solve real equations
} else {
$x = $this->H[$i][$i+1];
$y = $this->H[$i+1][$i];
$q = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i];
$t = ($x * $s - $z * $r) / $q;
$this->H[$i][$n] = $t;
if (abs($x) > abs($z)) {
$this->H[$i+1][$n] = (-$r - $w * $t) / $x;
} else {
$this->H[$i+1][$n] = (-$s - $y * $t) / $z;
}
}
// Overflow control
$t = abs($this->H[$i][$n]);
if (($eps * $t) * $t > 1) {
for ($j = $i; $j <= $n; ++$j) {
$this->H[$j][$n] = $this->H[$j][$n] / $t;
}
}
}
}
// Complex vector
} else if ($q < 0) {
$l = $n-1;
// Last vector component imaginary so matrix is triangular
if (abs($this->H[$n][$n-1]) > abs($this->H[$n-1][$n])) {
$this->H[$n-1][$n-1] = $q / $this->H[$n][$n-1];
$this->H[$n-1][$n] = -($this->H[$n][$n] - $p) / $this->H[$n][$n-1];
} else {
$this->cdiv(0.0, -$this->H[$n-1][$n], $this->H[$n-1][$n-1] - $p, $q);
$this->H[$n-1][$n-1] = $this->cdivr;
$this->H[$n-1][$n] = $this->cdivi;
}
$this->H[$n][$n-1] = 0.0;
$this->H[$n][$n] = 1.0;
for ($i = $n-2; $i >= 0; --$i) {
// double ra,sa,vr,vi;
$ra = 0.0;
$sa = 0.0;
for ($j = $l; $j <= $n; ++$j) {
$ra = $ra + $this->H[$i][$j] * $this->H[$j][$n-1];
$sa = $sa + $this->H[$i][$j] * $this->H[$j][$n];
}
$w = $this->H[$i][$i] - $p;
if ($this->e[$i] < 0.0) {
$z = $w;
$r = $ra;
$s = $sa;
} else {
$l = $i;
if ($this->e[$i] == 0) {
$this->cdiv(-$ra, -$sa, $w, $q);
$this->H[$i][$n-1] = $this->cdivr;
$this->H[$i][$n] = $this->cdivi;
} else {
// Solve complex equations
$x = $this->H[$i][$i+1];
$y = $this->H[$i+1][$i];
$vr = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i] - $q * $q;
$vi = ($this->d[$i] - $p) * 2.0 * $q;
if ($vr == 0.0 & $vi == 0.0) {
$vr = $eps * $norm * (abs($w) + abs($q) + abs($x) + abs($y) + abs($z));
}
$this->cdiv($x * $r - $z * $ra + $q * $sa, $x * $s - $z * $sa - $q * $ra, $vr, $vi);
$this->H[$i][$n-1] = $this->cdivr;
$this->H[$i][$n] = $this->cdivi;
if (abs($x) > (abs($z) + abs($q))) {
$this->H[$i+1][$n-1] = (-$ra - $w * $this->H[$i][$n-1] + $q * $this->H[$i][$n]) / $x;
$this->H[$i+1][$n] = (-$sa - $w * $this->H[$i][$n] - $q * $this->H[$i][$n-1]) / $x;
} else {
$this->cdiv(-$r - $y * $this->H[$i][$n-1], -$s - $y * $this->H[$i][$n], $z, $q);
$this->H[$i+1][$n-1] = $this->cdivr;
$this->H[$i+1][$n] = $this->cdivi;
}
}
// Overflow control
$t = max(abs($this->H[$i][$n-1]),abs($this->H[$i][$n]));
if (($eps * $t) * $t > 1) {
for ($j = $i; $j <= $n; ++$j) {
$this->H[$j][$n-1] = $this->H[$j][$n-1] / $t;
$this->H[$j][$n] = $this->H[$j][$n] / $t;
}
}
} // end else
} // end for
} // end else for complex case
} // end for
// Vectors of isolated roots
for ($i = 0; $i < $nn; ++$i) {
if ($i < $low | $i > $high) {
for ($j = $i; $j < $nn; ++$j) {
$this->V[$i][$j] = $this->H[$i][$j];
}
}
}
// Back transformation to get eigenvectors of original matrix
for ($j = $nn-1; $j >= $low; --$j) {
for ($i = $low; $i <= $high; ++$i) {
$z = 0.0;
for ($k = $low; $k <= min($j,$high); ++$k) {
$z = $z + $this->V[$i][$k] * $this->H[$k][$j];
}
$this->V[$i][$j] = $z;
}
}
} // end hqr2
/**
* Constructor: Check for symmetry, then construct the eigenvalue decomposition
*
* @access public
* @param A Square matrix
* @return Structure to access D and V.
*/
public function __construct($Arg) {
$this->A = $Arg->getArray();
$this->n = $Arg->getColumnDimension();
$issymmetric = true;
for ($j = 0; ($j < $this->n) & $issymmetric; ++$j) {
for ($i = 0; ($i < $this->n) & $issymmetric; ++$i) {
$issymmetric = ($this->A[$i][$j] == $this->A[$j][$i]);
}
}
if ($issymmetric) {
$this->V = $this->A;
// Tridiagonalize.
$this->tred2();
// Diagonalize.
$this->tql2();
} else {
$this->H = $this->A;
$this->ort = array();
// Reduce to Hessenberg form.
$this->orthes();
// Reduce Hessenberg to real Schur form.
$this->hqr2();
}
}
/**
* Return the eigenvector matrix
*
* @access public
* @return V
*/
public function getV() {
return new Matrix($this->V, $this->n, $this->n);
}
/**
* Return the real parts of the eigenvalues
*
* @access public
* @return real(diag(D))
*/
public function getRealEigenvalues() {
return $this->d;
}
/**
* Return the imaginary parts of the eigenvalues
*
* @access public
* @return imag(diag(D))
*/
public function getImagEigenvalues() {
return $this->e;
}
/**
* Return the block diagonal eigenvalue matrix
*
* @access public
* @return D
*/
public function getD() {
for ($i = 0; $i < $this->n; ++$i) {
$D[$i] = array_fill(0, $this->n, 0.0);
$D[$i][$i] = $this->d[$i];
if ($this->e[$i] == 0) {
continue;
}
$o = ($this->e[$i] > 0) ? $i + 1 : $i - 1;
$D[$i][$o] = $this->e[$i];
}
return new Matrix($D);
}
} // class EigenvalueDecomposition

View File

@ -0,0 +1,258 @@
<?php
/**
* @package JAMA
*
* For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
* unit lower triangular matrix L, an n-by-n upper triangular matrix U,
* and a permutation vector piv of length m so that A(piv,:) = L*U.
* If m < n, then L is m-by-m and U is m-by-n.
*
* The LU decompostion with pivoting always exists, even if the matrix is
* singular, so the constructor will never fail. The primary use of the
* LU decomposition is in the solution of square systems of simultaneous
* linear equations. This will fail if isNonsingular() returns false.
*
* @author Paul Meagher
* @author Bartosz Matosiuk
* @author Michael Bommarito
* @version 1.1
* @license PHP v3.0
*/
class PHPExcel_Shared_JAMA_LUDecomposition {
const MatrixSingularException = "Can only perform operation on singular matrix.";
const MatrixSquareException = "Mismatched Row dimension";
/**
* Decomposition storage
* @var array
*/
private $LU = array();
/**
* Row dimension.
* @var int
*/
private $m;
/**
* Column dimension.
* @var int
*/
private $n;
/**
* Pivot sign.
* @var int
*/
private $pivsign;
/**
* Internal storage of pivot vector.
* @var array
*/
private $piv = array();
/**
* LU Decomposition constructor.
*
* @param $A Rectangular matrix
* @return Structure to access L, U and piv.
*/
public function __construct($A) {
if ($A instanceof PHPExcel_Shared_JAMA_Matrix) {
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
$this->LU = $A->getArray();
$this->m = $A->getRowDimension();
$this->n = $A->getColumnDimension();
for ($i = 0; $i < $this->m; ++$i) {
$this->piv[$i] = $i;
}
$this->pivsign = 1;
$LUrowi = $LUcolj = array();
// Outer loop.
for ($j = 0; $j < $this->n; ++$j) {
// Make a copy of the j-th column to localize references.
for ($i = 0; $i < $this->m; ++$i) {
$LUcolj[$i] = &$this->LU[$i][$j];
}
// Apply previous transformations.
for ($i = 0; $i < $this->m; ++$i) {
$LUrowi = $this->LU[$i];
// Most of the time is spent in the following dot product.
$kmax = min($i,$j);
$s = 0.0;
for ($k = 0; $k < $kmax; ++$k) {
$s += $LUrowi[$k] * $LUcolj[$k];
}
$LUrowi[$j] = $LUcolj[$i] -= $s;
}
// Find pivot and exchange if necessary.
$p = $j;
for ($i = $j+1; $i < $this->m; ++$i) {
if (abs($LUcolj[$i]) > abs($LUcolj[$p])) {
$p = $i;
}
}
if ($p != $j) {
for ($k = 0; $k < $this->n; ++$k) {
$t = $this->LU[$p][$k];
$this->LU[$p][$k] = $this->LU[$j][$k];
$this->LU[$j][$k] = $t;
}
$k = $this->piv[$p];
$this->piv[$p] = $this->piv[$j];
$this->piv[$j] = $k;
$this->pivsign = $this->pivsign * -1;
}
// Compute multipliers.
if (($j < $this->m) && ($this->LU[$j][$j] != 0.0)) {
for ($i = $j+1; $i < $this->m; ++$i) {
$this->LU[$i][$j] /= $this->LU[$j][$j];
}
}
}
} else {
throw new Exception(PHPExcel_Shared_JAMA_Matrix::ArgumentTypeException);
}
} // function __construct()
/**
* Get lower triangular factor.
*
* @return array Lower triangular factor
*/
public function getL() {
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
if ($i > $j) {
$L[$i][$j] = $this->LU[$i][$j];
} elseif ($i == $j) {
$L[$i][$j] = 1.0;
} else {
$L[$i][$j] = 0.0;
}
}
}
return new PHPExcel_Shared_JAMA_Matrix($L);
} // function getL()
/**
* Get upper triangular factor.
*
* @return array Upper triangular factor
*/
public function getU() {
for ($i = 0; $i < $this->n; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
if ($i <= $j) {
$U[$i][$j] = $this->LU[$i][$j];
} else {
$U[$i][$j] = 0.0;
}
}
}
return new PHPExcel_Shared_JAMA_Matrix($U);
} // function getU()
/**
* Return pivot permutation vector.
*
* @return array Pivot vector
*/
public function getPivot() {
return $this->piv;
} // function getPivot()
/**
* Alias for getPivot
*
* @see getPivot
*/
public function getDoublePivot() {
return $this->getPivot();
} // function getDoublePivot()
/**
* Is the matrix nonsingular?
*
* @return true if U, and hence A, is nonsingular.
*/
public function isNonsingular() {
for ($j = 0; $j < $this->n; ++$j) {
if ($this->LU[$j][$j] == 0) {
return false;
}
}
return true;
} // function isNonsingular()
/**
* Count determinants
*
* @return array d matrix deterninat
*/
public function det() {
if ($this->m == $this->n) {
$d = $this->pivsign;
for ($j = 0; $j < $this->n; ++$j) {
$d *= $this->LU[$j][$j];
}
return $d;
} else {
throw new Exception(PHPExcel_Shared_JAMA_Matrix::MatrixDimensionException);
}
} // function det()
/**
* Solve A*X = B
*
* @param $B A Matrix with as many rows as A and any number of columns.
* @return X so that L*U*X = B(piv,:)
* @exception IllegalArgumentException Matrix row dimensions must agree.
* @exception RuntimeException Matrix is singular.
*/
public function solve($B) {
if ($B->getRowDimension() == $this->m) {
if ($this->isNonsingular()) {
// Copy right hand side with pivoting
$nx = $B->getColumnDimension();
$X = $B->getMatrix($this->piv, 0, $nx-1);
// Solve L*Y = B(piv,:)
for ($k = 0; $k < $this->n; ++$k) {
for ($i = $k+1; $i < $this->n; ++$i) {
for ($j = 0; $j < $nx; ++$j) {
$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
}
}
}
// Solve U*X = Y;
for ($k = $this->n-1; $k >= 0; --$k) {
for ($j = 0; $j < $nx; ++$j) {
$X->A[$k][$j] /= $this->LU[$k][$k];
}
for ($i = 0; $i < $k; ++$i) {
for ($j = 0; $j < $nx; ++$j) {
$X->A[$i][$j] -= $X->A[$k][$j] * $this->LU[$i][$k];
}
}
}
return $X;
} else {
throw new Exception(self::MatrixSingularException);
}
} else {
throw new Exception(self::MatrixSquareException);
}
} // function solve()
} // class PHPExcel_Shared_JAMA_LUDecomposition

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,234 @@
<?php
/**
* @package JAMA
*
* For an m-by-n matrix A with m >= n, the QR decomposition is an m-by-n
* orthogonal matrix Q and an n-by-n upper triangular matrix R so that
* A = Q*R.
*
* The QR decompostion always exists, even if the matrix does not have
* full rank, so the constructor will never fail. The primary use of the
* QR decomposition is in the least squares solution of nonsquare systems
* of simultaneous linear equations. This will fail if isFullRank()
* returns false.
*
* @author Paul Meagher
* @license PHP v3.0
* @version 1.1
*/
class PHPExcel_Shared_JAMA_QRDecomposition {
const MatrixRankException = "Can only perform operation on full-rank matrix.";
/**
* Array for internal storage of decomposition.
* @var array
*/
private $QR = array();
/**
* Row dimension.
* @var integer
*/
private $m;
/**
* Column dimension.
* @var integer
*/
private $n;
/**
* Array for internal storage of diagonal of R.
* @var array
*/
private $Rdiag = array();
/**
* QR Decomposition computed by Householder reflections.
*
* @param matrix $A Rectangular matrix
* @return Structure to access R and the Householder vectors and compute Q.
*/
public function __construct($A) {
if($A instanceof PHPExcel_Shared_JAMA_Matrix) {
// Initialize.
$this->QR = $A->getArrayCopy();
$this->m = $A->getRowDimension();
$this->n = $A->getColumnDimension();
// Main loop.
for ($k = 0; $k < $this->n; ++$k) {
// Compute 2-norm of k-th column without under/overflow.
$nrm = 0.0;
for ($i = $k; $i < $this->m; ++$i) {
$nrm = hypo($nrm, $this->QR[$i][$k]);
}
if ($nrm != 0.0) {
// Form k-th Householder vector.
if ($this->QR[$k][$k] < 0) {
$nrm = -$nrm;
}
for ($i = $k; $i < $this->m; ++$i) {
$this->QR[$i][$k] /= $nrm;
}
$this->QR[$k][$k] += 1.0;
// Apply transformation to remaining columns.
for ($j = $k+1; $j < $this->n; ++$j) {
$s = 0.0;
for ($i = $k; $i < $this->m; ++$i) {
$s += $this->QR[$i][$k] * $this->QR[$i][$j];
}
$s = -$s/$this->QR[$k][$k];
for ($i = $k; $i < $this->m; ++$i) {
$this->QR[$i][$j] += $s * $this->QR[$i][$k];
}
}
}
$this->Rdiag[$k] = -$nrm;
}
} else {
throw new Exception(PHPExcel_Shared_JAMA_Matrix::ArgumentTypeException);
}
} // function __construct()
/**
* Is the matrix full rank?
*
* @return boolean true if R, and hence A, has full rank, else false.
*/
public function isFullRank() {
for ($j = 0; $j < $this->n; ++$j) {
if ($this->Rdiag[$j] == 0) {
return false;
}
}
return true;
} // function isFullRank()
/**
* Return the Householder vectors
*
* @return Matrix Lower trapezoidal matrix whose columns define the reflections
*/
public function getH() {
for ($i = 0; $i < $this->m; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
if ($i >= $j) {
$H[$i][$j] = $this->QR[$i][$j];
} else {
$H[$i][$j] = 0.0;
}
}
}
return new PHPExcel_Shared_JAMA_Matrix($H);
} // function getH()
/**
* Return the upper triangular factor
*
* @return Matrix upper triangular factor
*/
public function getR() {
for ($i = 0; $i < $this->n; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
if ($i < $j) {
$R[$i][$j] = $this->QR[$i][$j];
} elseif ($i == $j) {
$R[$i][$j] = $this->Rdiag[$i];
} else {
$R[$i][$j] = 0.0;
}
}
}
return new PHPExcel_Shared_JAMA_Matrix($R);
} // function getR()
/**
* Generate and return the (economy-sized) orthogonal factor
*
* @return Matrix orthogonal factor
*/
public function getQ() {
for ($k = $this->n-1; $k >= 0; --$k) {
for ($i = 0; $i < $this->m; ++$i) {
$Q[$i][$k] = 0.0;
}
$Q[$k][$k] = 1.0;
for ($j = $k; $j < $this->n; ++$j) {
if ($this->QR[$k][$k] != 0) {
$s = 0.0;
for ($i = $k; $i < $this->m; ++$i) {
$s += $this->QR[$i][$k] * $Q[$i][$j];
}
$s = -$s/$this->QR[$k][$k];
for ($i = $k; $i < $this->m; ++$i) {
$Q[$i][$j] += $s * $this->QR[$i][$k];
}
}
}
}
/*
for($i = 0; $i < count($Q); ++$i) {
for($j = 0; $j < count($Q); ++$j) {
if(! isset($Q[$i][$j]) ) {
$Q[$i][$j] = 0;
}
}
}
*/
return new PHPExcel_Shared_JAMA_Matrix($Q);
} // function getQ()
/**
* Least squares solution of A*X = B
*
* @param Matrix $B A Matrix with as many rows as A and any number of columns.
* @return Matrix Matrix that minimizes the two norm of Q*R*X-B.
*/
public function solve($B) {
if ($B->getRowDimension() == $this->m) {
if ($this->isFullRank()) {
// Copy right hand side
$nx = $B->getColumnDimension();
$X = $B->getArrayCopy();
// Compute Y = transpose(Q)*B
for ($k = 0; $k < $this->n; ++$k) {
for ($j = 0; $j < $nx; ++$j) {
$s = 0.0;
for ($i = $k; $i < $this->m; ++$i) {
$s += $this->QR[$i][$k] * $X[$i][$j];
}
$s = -$s/$this->QR[$k][$k];
for ($i = $k; $i < $this->m; ++$i) {
$X[$i][$j] += $s * $this->QR[$i][$k];
}
}
}
// Solve R*X = Y;
for ($k = $this->n-1; $k >= 0; --$k) {
for ($j = 0; $j < $nx; ++$j) {
$X[$k][$j] /= $this->Rdiag[$k];
}
for ($i = 0; $i < $k; ++$i) {
for ($j = 0; $j < $nx; ++$j) {
$X[$i][$j] -= $X[$k][$j]* $this->QR[$i][$k];
}
}
}
$X = new PHPExcel_Shared_JAMA_Matrix($X);
return ($X->getMatrix(0, $this->n-1, 0, $nx));
} else {
throw new Exception(self::MatrixRankException);
}
} else {
throw new Exception(PHPExcel_Shared_JAMA_Matrix::MatrixDimensionException);
}
} // function solve()
} // PHPExcel_Shared_JAMA_class QRDecomposition

View File

@ -0,0 +1,526 @@
<?php
/**
* @package JAMA
*
* For an m-by-n matrix A with m >= n, the singular value decomposition is
* an m-by-n orthogonal matrix U, an n-by-n diagonal matrix S, and
* an n-by-n orthogonal matrix V so that A = U*S*V'.
*
* The singular values, sigma[$k] = S[$k][$k], are ordered so that
* sigma[0] >= sigma[1] >= ... >= sigma[n-1].
*
* The singular value decompostion always exists, so the constructor will
* never fail. The matrix condition number and the effective numerical
* rank can be computed from this decomposition.
*
* @author Paul Meagher
* @license PHP v3.0
* @version 1.1
*/
class SingularValueDecomposition {
/**
* Internal storage of U.
* @var array
*/
private $U = array();
/**
* Internal storage of V.
* @var array
*/
private $V = array();
/**
* Internal storage of singular values.
* @var array
*/
private $s = array();
/**
* Row dimension.
* @var int
*/
private $m;
/**
* Column dimension.
* @var int
*/
private $n;
/**
* Construct the singular value decomposition
*
* Derived from LINPACK code.
*
* @param $A Rectangular matrix
* @return Structure to access U, S and V.
*/
public function __construct($Arg) {
// Initialize.
$A = $Arg->getArrayCopy();
$this->m = $Arg->getRowDimension();
$this->n = $Arg->getColumnDimension();
$nu = min($this->m, $this->n);
$e = array();
$work = array();
$wantu = true;
$wantv = true;
$nct = min($this->m - 1, $this->n);
$nrt = max(0, min($this->n - 2, $this->m));
// Reduce A to bidiagonal form, storing the diagonal elements
// in s and the super-diagonal elements in e.
for ($k = 0; $k < max($nct,$nrt); ++$k) {
if ($k < $nct) {
// Compute the transformation for the k-th column and
// place the k-th diagonal in s[$k].
// Compute 2-norm of k-th column without under/overflow.
$this->s[$k] = 0;
for ($i = $k; $i < $this->m; ++$i) {
$this->s[$k] = hypo($this->s[$k], $A[$i][$k]);
}
if ($this->s[$k] != 0.0) {
if ($A[$k][$k] < 0.0) {
$this->s[$k] = -$this->s[$k];
}
for ($i = $k; $i < $this->m; ++$i) {
$A[$i][$k] /= $this->s[$k];
}
$A[$k][$k] += 1.0;
}
$this->s[$k] = -$this->s[$k];
}
for ($j = $k + 1; $j < $this->n; ++$j) {
if (($k < $nct) & ($this->s[$k] != 0.0)) {
// Apply the transformation.
$t = 0;
for ($i = $k; $i < $this->m; ++$i) {
$t += $A[$i][$k] * $A[$i][$j];
}
$t = -$t / $A[$k][$k];
for ($i = $k; $i < $this->m; ++$i) {
$A[$i][$j] += $t * $A[$i][$k];
}
// Place the k-th row of A into e for the
// subsequent calculation of the row transformation.
$e[$j] = $A[$k][$j];
}
}
if ($wantu AND ($k < $nct)) {
// Place the transformation in U for subsequent back
// multiplication.
for ($i = $k; $i < $this->m; ++$i) {
$this->U[$i][$k] = $A[$i][$k];
}
}
if ($k < $nrt) {
// Compute the k-th row transformation and place the
// k-th super-diagonal in e[$k].
// Compute 2-norm without under/overflow.
$e[$k] = 0;
for ($i = $k + 1; $i < $this->n; ++$i) {
$e[$k] = hypo($e[$k], $e[$i]);
}
if ($e[$k] != 0.0) {
if ($e[$k+1] < 0.0) {
$e[$k] = -$e[$k];
}
for ($i = $k + 1; $i < $this->n; ++$i) {
$e[$i] /= $e[$k];
}
$e[$k+1] += 1.0;
}
$e[$k] = -$e[$k];
if (($k+1 < $this->m) AND ($e[$k] != 0.0)) {
// Apply the transformation.
for ($i = $k+1; $i < $this->m; ++$i) {
$work[$i] = 0.0;
}
for ($j = $k+1; $j < $this->n; ++$j) {
for ($i = $k+1; $i < $this->m; ++$i) {
$work[$i] += $e[$j] * $A[$i][$j];
}
}
for ($j = $k + 1; $j < $this->n; ++$j) {
$t = -$e[$j] / $e[$k+1];
for ($i = $k + 1; $i < $this->m; ++$i) {
$A[$i][$j] += $t * $work[$i];
}
}
}
if ($wantv) {
// Place the transformation in V for subsequent
// back multiplication.
for ($i = $k + 1; $i < $this->n; ++$i) {
$this->V[$i][$k] = $e[$i];
}
}
}
}
// Set up the final bidiagonal matrix or order p.
$p = min($this->n, $this->m + 1);
if ($nct < $this->n) {
$this->s[$nct] = $A[$nct][$nct];
}
if ($this->m < $p) {
$this->s[$p-1] = 0.0;
}
if ($nrt + 1 < $p) {
$e[$nrt] = $A[$nrt][$p-1];
}
$e[$p-1] = 0.0;
// If required, generate U.
if ($wantu) {
for ($j = $nct; $j < $nu; ++$j) {
for ($i = 0; $i < $this->m; ++$i) {
$this->U[$i][$j] = 0.0;
}
$this->U[$j][$j] = 1.0;
}
for ($k = $nct - 1; $k >= 0; --$k) {
if ($this->s[$k] != 0.0) {
for ($j = $k + 1; $j < $nu; ++$j) {
$t = 0;
for ($i = $k; $i < $this->m; ++$i) {
$t += $this->U[$i][$k] * $this->U[$i][$j];
}
$t = -$t / $this->U[$k][$k];
for ($i = $k; $i < $this->m; ++$i) {
$this->U[$i][$j] += $t * $this->U[$i][$k];
}
}
for ($i = $k; $i < $this->m; ++$i ) {
$this->U[$i][$k] = -$this->U[$i][$k];
}
$this->U[$k][$k] = 1.0 + $this->U[$k][$k];
for ($i = 0; $i < $k - 1; ++$i) {
$this->U[$i][$k] = 0.0;
}
} else {
for ($i = 0; $i < $this->m; ++$i) {
$this->U[$i][$k] = 0.0;
}
$this->U[$k][$k] = 1.0;
}
}
}
// If required, generate V.
if ($wantv) {
for ($k = $this->n - 1; $k >= 0; --$k) {
if (($k < $nrt) AND ($e[$k] != 0.0)) {
for ($j = $k + 1; $j < $nu; ++$j) {
$t = 0;
for ($i = $k + 1; $i < $this->n; ++$i) {
$t += $this->V[$i][$k]* $this->V[$i][$j];
}
$t = -$t / $this->V[$k+1][$k];
for ($i = $k + 1; $i < $this->n; ++$i) {
$this->V[$i][$j] += $t * $this->V[$i][$k];
}
}
}
for ($i = 0; $i < $this->n; ++$i) {
$this->V[$i][$k] = 0.0;
}
$this->V[$k][$k] = 1.0;
}
}
// Main iteration loop for the singular values.
$pp = $p - 1;
$iter = 0;
$eps = pow(2.0, -52.0);
while ($p > 0) {
// Here is where a test for too many iterations would go.
// This section of the program inspects for negligible
// elements in the s and e arrays. On completion the
// variables kase and k are set as follows:
// kase = 1 if s(p) and e[k-1] are negligible and k<p
// kase = 2 if s(k) is negligible and k<p
// kase = 3 if e[k-1] is negligible, k<p, and
// s(k), ..., s(p) are not negligible (qr step).
// kase = 4 if e(p-1) is negligible (convergence).
for ($k = $p - 2; $k >= -1; --$k) {
if ($k == -1) {
break;
}
if (abs($e[$k]) <= $eps * (abs($this->s[$k]) + abs($this->s[$k+1]))) {
$e[$k] = 0.0;
break;
}
}
if ($k == $p - 2) {
$kase = 4;
} else {
for ($ks = $p - 1; $ks >= $k; --$ks) {
if ($ks == $k) {
break;
}
$t = ($ks != $p ? abs($e[$ks]) : 0.) + ($ks != $k + 1 ? abs($e[$ks-1]) : 0.);
if (abs($this->s[$ks]) <= $eps * $t) {
$this->s[$ks] = 0.0;
break;
}
}
if ($ks == $k) {
$kase = 3;
} else if ($ks == $p-1) {
$kase = 1;
} else {
$kase = 2;
$k = $ks;
}
}
++$k;
// Perform the task indicated by kase.
switch ($kase) {
// Deflate negligible s(p).
case 1:
$f = $e[$p-2];
$e[$p-2] = 0.0;
for ($j = $p - 2; $j >= $k; --$j) {
$t = hypo($this->s[$j],$f);
$cs = $this->s[$j] / $t;
$sn = $f / $t;
$this->s[$j] = $t;
if ($j != $k) {
$f = -$sn * $e[$j-1];
$e[$j-1] = $cs * $e[$j-1];
}
if ($wantv) {
for ($i = 0; $i < $this->n; ++$i) {
$t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$p-1];
$this->V[$i][$p-1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$p-1];
$this->V[$i][$j] = $t;
}
}
}
break;
// Split at negligible s(k).
case 2:
$f = $e[$k-1];
$e[$k-1] = 0.0;
for ($j = $k; $j < $p; ++$j) {
$t = hypo($this->s[$j], $f);
$cs = $this->s[$j] / $t;
$sn = $f / $t;
$this->s[$j] = $t;
$f = -$sn * $e[$j];
$e[$j] = $cs * $e[$j];
if ($wantu) {
for ($i = 0; $i < $this->m; ++$i) {
$t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$k-1];
$this->U[$i][$k-1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$k-1];
$this->U[$i][$j] = $t;
}
}
}
break;
// Perform one qr step.
case 3:
// Calculate the shift.
$scale = max(max(max(max(
abs($this->s[$p-1]),abs($this->s[$p-2])),abs($e[$p-2])),
abs($this->s[$k])), abs($e[$k]));
$sp = $this->s[$p-1] / $scale;
$spm1 = $this->s[$p-2] / $scale;
$epm1 = $e[$p-2] / $scale;
$sk = $this->s[$k] / $scale;
$ek = $e[$k] / $scale;
$b = (($spm1 + $sp) * ($spm1 - $sp) + $epm1 * $epm1) / 2.0;
$c = ($sp * $epm1) * ($sp * $epm1);
$shift = 0.0;
if (($b != 0.0) || ($c != 0.0)) {
$shift = sqrt($b * $b + $c);
if ($b < 0.0) {
$shift = -$shift;
}
$shift = $c / ($b + $shift);
}
$f = ($sk + $sp) * ($sk - $sp) + $shift;
$g = $sk * $ek;
// Chase zeros.
for ($j = $k; $j < $p-1; ++$j) {
$t = hypo($f,$g);
$cs = $f/$t;
$sn = $g/$t;
if ($j != $k) {
$e[$j-1] = $t;
}
$f = $cs * $this->s[$j] + $sn * $e[$j];
$e[$j] = $cs * $e[$j] - $sn * $this->s[$j];
$g = $sn * $this->s[$j+1];
$this->s[$j+1] = $cs * $this->s[$j+1];
if ($wantv) {
for ($i = 0; $i < $this->n; ++$i) {
$t = $cs * $this->V[$i][$j] + $sn * $this->V[$i][$j+1];
$this->V[$i][$j+1] = -$sn * $this->V[$i][$j] + $cs * $this->V[$i][$j+1];
$this->V[$i][$j] = $t;
}
}
$t = hypo($f,$g);
$cs = $f/$t;
$sn = $g/$t;
$this->s[$j] = $t;
$f = $cs * $e[$j] + $sn * $this->s[$j+1];
$this->s[$j+1] = -$sn * $e[$j] + $cs * $this->s[$j+1];
$g = $sn * $e[$j+1];
$e[$j+1] = $cs * $e[$j+1];
if ($wantu && ($j < $this->m - 1)) {
for ($i = 0; $i < $this->m; ++$i) {
$t = $cs * $this->U[$i][$j] + $sn * $this->U[$i][$j+1];
$this->U[$i][$j+1] = -$sn * $this->U[$i][$j] + $cs * $this->U[$i][$j+1];
$this->U[$i][$j] = $t;
}
}
}
$e[$p-2] = $f;
$iter = $iter + 1;
break;
// Convergence.
case 4:
// Make the singular values positive.
if ($this->s[$k] <= 0.0) {
$this->s[$k] = ($this->s[$k] < 0.0 ? -$this->s[$k] : 0.0);
if ($wantv) {
for ($i = 0; $i <= $pp; ++$i) {
$this->V[$i][$k] = -$this->V[$i][$k];
}
}
}
// Order the singular values.
while ($k < $pp) {
if ($this->s[$k] >= $this->s[$k+1]) {
break;
}
$t = $this->s[$k];
$this->s[$k] = $this->s[$k+1];
$this->s[$k+1] = $t;
if ($wantv AND ($k < $this->n - 1)) {
for ($i = 0; $i < $this->n; ++$i) {
$t = $this->V[$i][$k+1];
$this->V[$i][$k+1] = $this->V[$i][$k];
$this->V[$i][$k] = $t;
}
}
if ($wantu AND ($k < $this->m-1)) {
for ($i = 0; $i < $this->m; ++$i) {
$t = $this->U[$i][$k+1];
$this->U[$i][$k+1] = $this->U[$i][$k];
$this->U[$i][$k] = $t;
}
}
++$k;
}
$iter = 0;
--$p;
break;
} // end switch
} // end while
} // end constructor
/**
* Return the left singular vectors
*
* @access public
* @return U
*/
public function getU() {
return new Matrix($this->U, $this->m, min($this->m + 1, $this->n));
}
/**
* Return the right singular vectors
*
* @access public
* @return V
*/
public function getV() {
return new Matrix($this->V);
}
/**
* Return the one-dimensional array of singular values
*
* @access public
* @return diagonal of S.
*/
public function getSingularValues() {
return $this->s;
}
/**
* Return the diagonal matrix of singular values
*
* @access public
* @return S
*/
public function getS() {
for ($i = 0; $i < $this->n; ++$i) {
for ($j = 0; $j < $this->n; ++$j) {
$S[$i][$j] = 0.0;
}
$S[$i][$i] = $this->s[$i];
}
return new Matrix($S);
}
/**
* Two norm
*
* @access public
* @return max(S)
*/
public function norm2() {
return $this->s[0];
}
/**
* Two norm condition number
*
* @access public
* @return max(S)/min(S)
*/
public function cond() {
return $this->s[0] / $this->s[min($this->m, $this->n) - 1];
}
/**
* Effective numerical matrix rank
*
* @access public
* @return Number of nonnegligible singular values.
*/
public function rank() {
$eps = pow(2.0, -52.0);
$tol = max($this->m, $this->n) * $this->s[0] * $eps;
$r = 0;
for ($i = 0; $i < count($this->s); ++$i) {
if ($this->s[$i] > $tol) {
++$r;
}
}
return $r;
}
} // class SingularValueDecomposition

View File

@ -0,0 +1,6 @@
<?php
require_once "includes/header.php";
require_once "includes/navbar.php";
require_once "sections/Home.php";
require_once "includes/footer.php";
?>

View File

@ -0,0 +1,65 @@
<?php
/**
* Script to create REGRESS package for download
*
* @author Mike Bommarito
* @author Paul Meagher
* @version 0.3
* @modified Apr 2, 2006
*
* Note: Script requires the PEAR Archive_Tar package be installed:
*
* @see http://pear.php.net/package/Archive_Tar
*/
// name and directory of package
$pkgName = "JAMA";
// root of PHP/Math build directory
$buildDir = substr(dirname(__FILE__), 0, -5 - strlen($pkgName));
// switch to PHP/Math build directory
chdir($buildDir);
$tarName = "$pkgName.tar.gz";
$tarPath = $buildDir.$pkgName."/downloads/".$tarName;
if($_GET['op'] == "download") {
require_once('Archive/Tar.php');
$tar = new Archive_Tar($tarPath);
// create $pkgName archive under $pkgName folder
$files = glob("$pkgName/*.php");
$files = array_merge($files, glob("$pkgName/*.TXT"));
$files = array_merge($files, glob("$pkgName/docs/*.php"));
$files = array_merge($files, glob("$pkgName/docs/includes/*.php"));
$files = array_merge($files, glob("$pkgName/examples/*.php"));
$files = array_merge($files, glob("$pkgName/tests/*.php"));
$files = array_merge($files, glob("$pkgName/utils/*.php"));
$tar->create($files);
// create the download url
$webDir = substr($_SERVER['PHP_SELF'], 0, -18);
$urlPath = "http://".$_SERVER['HTTP_HOST'].$webDir."/downloads";
// redirect to download url
header("Location: $urlPath/$tarName");
}
include_once "includes/header.php";
include_once "includes/navbar.php";
?>
<p>
Download current version:
</p>
<ul>
<li><a href='<?php echo $_SERVER['PHP_SELF']."?op=download"; ?>'><?php echo $tarName ?></a></li>
</ul>
<?php
include_once "includes/footer.php";
?>

View File

@ -0,0 +1,166 @@
<?php
include_once "includes/header.php";
include_once "includes/navbar.php";
?>
<h2>Magic Square Example</h2>
<p>
The Jama distribution comes with a magic square example that is used to
test and benchmark the LU, QR, SVD and symmetric Eig decompositions.
The example outputs a multi-column table with these column headings:
</p>
<table border='1' cellpadding='5' cellspacing='0' align='center'>
<tr>
<td><b>n</b></td>
<td>Order of magic square.</td>
</tr>
<tr>
<td><b>trace</b></td>
<td>Diagonal sum, should be the magic sum, (n^3 + n)/2.</td>
</tr>
<tr>
<td><b>max_eig</b></td>
<td>Maximum eigenvalue of (A + A')/2, should equal trace.</td>
</tr>
<tr>
<td><b>rank</b></td>
<td>Linear algebraic rank, should equal n if n is odd, be less than n if n is even.</td>
</tr>
<tr>
<td><b>cond</b></td>
<td>L_2 condition number, ratio of singular values.</td>
</tr>
<tr>
<td><b>lu_res</b></td>
<td>test of LU factorization, norm1(L*U-A(p,:))/(n*eps).</td>
</tr>
<tr>
<td><b>qr_res</b></td>
<td>test of QR factorization, norm1(Q*R-A)/(n*eps).</td>
</tr>
</table>
<p>
Running the Java-based version of the matix square example produces these results:
</p>
<table border='1' align='center'>
<tr>
<th> n </th>
<th> trace </th>
<th> max_eig </th>
<th> rank </th>
<th> cond </th>
<th> lu_res </th>
<th> qr_res </th>
</tr>
<tr>
<td>3</td><td>15</td><td>15.000</td><td>3</td><td>4.330</td><td>0.000</td><td>11.333</td>
</tr>
<tr>
<td>4</td><td>34</td><td>34.000</td><td>3</td><td> Inf</td><td>0.000</td><td>13.500</td>
<tr>
<td>5</td><td>65</td><td>65.000</td><td>5</td><td>5.462</td><td>0.000</td><td>14.400</td>
</tr>
<tr>
<td>6</td><td>111</td><td>111.000</td><td>5</td><td> Inf</td><td>5.333</td><td>16.000</td>
</tr>
<tr>
<td>7</td><td>175</td><td>175.000</td><td>7</td><td>7.111</td><td>2.286</td><td>37.714</td>
</tr>
<tr>
<td>8</td><td>260</td><td>260.000</td><td>3</td><td> Inf</td><td>0.000</td><td>59.000</td>
</tr>
<tr>
<td>9</td><td>369</td><td>369.000</td><td>9</td><td>9.102</td><td>7.111</td><td>53.333</td>
</tr>
<tr>
<td>10</td><td>505</td><td>505.000</td><td>7</td><td> Inf</td><td>3.200</td><td>159.200</td>
</tr>
<tr>
<td>11</td><td>671</td><td>671.000</td><td>11</td><td>11.102</td><td>2.909</td><td>215.273</td>
</tr>
<tr>
<td>12</td><td>870</td><td>870.000</td><td>3</td><td> Inf</td><td>0.000</td><td>185.333</td>
</tr>
<tr>
<td>13</td><td>1105</td><td>1105.000</td><td>13</td><td>13.060</td><td>4.923</td><td>313.846</td>
</tr>
<tr>
<td>14</td><td>1379</td><td>1379.000</td><td>9</td><td> Inf</td><td>4.571</td><td>540.571</td>
</tr>
<tr>
<td>15</td><td>1695</td><td>1695.000</td><td>15</td><td>15.062</td><td>4.267</td><td>242.133</td>
</tr>
<tr>
<td>16</td><td>2056</td><td>2056.000</td><td>3</td><td> Inf</td><td>0.000</td><td>488.500</td>
</tr>
<tr>
<td>17</td><td>2465</td><td>2465.000</td><td>17</td><td>17.042</td><td>7.529</td><td>267.294</td>
</tr>
<tr>
<td>18</td><td>2925</td><td>2925.000</td><td>11</td><td> Inf</td><td>7.111</td><td>520.889</td>
</tr>
<tr>
<td>19</td><td>3439</td><td>3439.000</td><td>19</td><td>19.048</td><td>16.842</td><td>387.368</td>
</tr>
<tr>
<td>20</td><td>4010</td><td>4010.000</td><td>3</td><td> Inf</td><td>14.400</td><td>584.800</td>
</tr>
<tr>
<td>21</td><td>4641</td><td>4641.000</td><td>21</td><td>21.035</td><td>6.095</td><td>1158.095</td>
</tr>
<tr>
<td>22</td><td>5335</td><td>5335.000</td><td>13</td><td> Inf</td><td>6.545</td><td>1132.364</td>
</tr>
<tr>
<td>23</td><td>6095</td><td>6095.000</td><td>23</td><td>23.037</td><td>11.130</td><td>1268.870</td>
</tr>
<tr>
<td>24</td><td>6924</td><td>6924.000</td><td>3</td><td> Inf</td><td>10.667</td><td>827.500</td>
</tr>
<tr>
<td>25</td><td>7825</td><td>7825.000</td><td>25</td><td>25.029</td><td>35.840</td><td>1190.400</td>
</tr>
<tr>
<td>26</td><td>8801</td><td>8801.000</td><td>15</td><td> Inf</td><td>4.923</td><td>1859.077</td>
</tr>
<tr>
<td>27</td><td>9855</td><td>9855.000</td><td>27</td><td>27.032</td><td>37.926</td><td>1365.333</td>
</tr>
<tr>
<td>28</td><td>10990</td><td>10990.000</td><td>3</td><td> Inf</td><td>34.286</td><td>1365.714</td>
</tr>
<tr>
<td>29</td><td>12209</td><td>12209.000</td><td>29</td><td>29.025</td><td>30.897</td><td>1647.448</td>
</tr>
<tr>
<td>30</td><td>13515</td><td>13515.000</td><td>17</td><td> Inf</td><td>8.533</td><td>2571.733</td>
</tr>
<tr>
<td>31</td><td>14911</td><td>14911.000</td><td>31</td><td>31.027</td><td>33.032</td><td>1426.581</td>
</tr>
<tr>
<td>32</td><td>16400</td><td>16400.000</td><td>3</td><td> Inf</td><td>0.000</td><td>1600.125</td>
</tr>
</table>
<center>Elapsed Time = 0.710 seconds</center>
<p>
The magic square example does not fare well when <a href='../examples/MagicSquareExample.php'>run as a PHP script</a>. For a 32x32 matrix array
it takes around a second to complete just the last row of computations in the above table.
Hopefully this result will spur PHP developers to find optimizations and better attuned algorithms
to speed things up. Matrix algebra is a great testing ground for ideas about time and memory
performance optimation. Keep in perspective that PHP JAMA scripts are still plenty fast for use as
a tool for learning about matrix algebra and quickly extending your knowledge with new scripts
to apply knowledge.
</p>
<p>
To learn more about the subject of magic squares you can visit the <a href='http://mathforum.org/alejandre/magic.square.html'>Drexel Math Forum on Magic Squares</a>.
You can also learn more by carefully examining the <code>MagicSquareExample.php</code> source code below.
</p>
<?php
highlight_file("../examples/MagicSquareExample.php");
include_once "includes/footer.php";
?>

View File

@ -0,0 +1,14 @@
<div id="credits">
<p>
Brought to you by:
</p>
<ul>
<li><a href="http://math.nist.gov/">National Institute of Standards and Technology</a></li>
<li><a href="http://math.nist.gov/">MathWorks</a></li>
<li><a href="http://math.nist.gov/javanumerics/jama/">JAMA : A Java Matrix Package</a></li>
<li>Paul Meagher</li>
<li>Michael Bommarito</li>
<li>Lukasz Karapuda</li>
<li>Bartek Matosiuk</li>
</ul>
</div>

View File

@ -0,0 +1,2 @@
</body>
</html>

View File

@ -0,0 +1,11 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>JAMA v1.0.1</title>
<meta name="description" content="JAMA v1.0.1 - Port of the proposed standard Java Matrix Library to PHP" />
<meta name="robots" content="index, follow" />
<meta name="keywords" content="php, matrix, matrix library, cholesky decomposition, eigenvalue decomposition, eigenvector, lu decomposition, qr decomposition, singular value decomposition" />
<link rel="stylesheet" type="text/css" href="style.css" />
</head>
<body>

View File

@ -0,0 +1,5 @@
<center>
<hr />
[ <a href="index.php">index.php</a> ] [ <a href="docs.php">docs.php</a> ] [ <a href="package.php">package.php</a> ] [ <a href="test.php">test.php</a> ] [ <a href="example.php">example.php</a> ] [ <a href="download.php">download.php</a> ]
<hr />
</center>

View File

@ -0,0 +1,30 @@
<?php
include_once "includes/header.php";
include_once "includes/navbar.php";
?>
<p>
JAMA is a proposed standard matrix class for Java. The JAMA introduction
describes "JAMA : A Java Matrix Package" in this way:
</p>
<blockquote>
JAMA is a basic linear algebra package for Java. It provides user-level classes for
constructing and manipulating real, dense matrices. It is meant to provide sufficient
functionality for routine problems, packaged in a way that is natural and understandable
to non-experts. It is intended to serve as the standard matrix class for Java, and
will be proposed as such to the Java Grande Forum and then to Sun. A straightforward
public-domain reference implementation has been developed by the MathWorks and NIST as
a strawman for such a class. We are releasing this version in order to obtain public
comment. There is no guarantee that future versions of JAMA will be compatible with this one.
</blockquote>
<p>
The development team below has successfully ported the JAMA API to PHP. You can explore
this site to learn more about this project and it's current development status.
</p>
<?php
include_once "includes/credits.php";
include_once "includes/footer.php";
?>

View File

@ -0,0 +1,37 @@
<?php
include_once "includes/header.php";
include_once "includes/navbar.php";
?>
<p>
Source Listing:
</p>
<ul>
<?php
chdir("../");
$files = glob("*.php");
$files = array_merge($files, glob("util/*.php"));
foreach ($files as $fileName) {
?>
<li><a href="package.php?view=<?php echo sha1($fileName);?>"><?php echo $fileName;?></a>&nbsp;-&nbsp;<?php echo date ("F d Y - g:i a", filemtime($fileName));?></li>
<?php
}
?>
</ul>
<?php
if( isset($_REQUEST['view']) ) {
$hash = $_REQUEST['view'];
$n = array_search($hash, array_map(sha1, $files));
$fileName = $files[$n];
?>
<hr />
Viewing: <?php echo $fileName;?>
<hr />
<?php
highlight_file($fileName);
?>
<hr />
<?php
}
include_once "includes/footer.php";
?>

View File

@ -0,0 +1,28 @@
<?php
include_once "includes/header.php";
include_once "includes/navbar.php";
?>
<p>
The first script your should run when you install Jama is the TestMatrix.php script.
</p>
<p>
This will run the unit tests for methods in the <code>Matrix.php</code> class. Because
the Matrix.php class can be used to invoke all the decomposition methods the <code>TestMatrix.php</code>
script is a test suite for the whole Jama package.
</p>
<p>
The original <code>TestMatrix.java</code> code uses try/catch error handling. We will
eventually create a build of JAMA that will take advantage of PHP5's new try/catch error
handling capabilities. This will improve our ability to replicate all the unit tests that
appeared in the original (except for some print methods that may not be worth porting).
</p>
<p>
You can <a href='../test/TestMatrix.php'>run the TestMatrix.php script</a> to see what
unit tests are currently implemented. The source of the <code>TestMatrix.php</code> script
is provided below. It is worth studying carefully for an example of how to do matrix algebra
programming with Jama.
</p>
<?php
highlight_file("../test/TestMatrix.php");
include_once "includes/footer.php";
?>

View File

@ -0,0 +1,116 @@
<?php
/**
* quadratic (p-o)'S'S(p-o)
* solve for o, S
* S is a single scale factor
*/
class LMQuadTest {
/**
* @param array[] $x
* @param array[] $a
*/
function val($x, $a) {
if (count($a) != 3) die ("Wrong number of elements in array a");
if (count($x) != 2) die ("Wrong number of elements in array x");
$ox = $a[0];
$oy = $a[1];
$s = $a[2];
$sdx = $s * ($x[0] - $ox);
$sdy = $s * ($x[1] - $oy);
return ($sdx * $sdx) + ($sdy * $sdy);
} // function val()
/**
* z = (p-o)'S'S(p-o)
* dz/dp = 2S'S(p-o)
*
* z = (s*(px-ox))^2 + (s*(py-oy))^2
* dz/dox = -2(s*(px-ox))*s
* dz/ds = 2*s*[(px-ox)^2 + (py-oy)^2]
*
* z = (s*dx)^2 + (s*dy)^2
* dz/ds = 2(s*dx)*dx + 2(s*dy)*dy
*
* @param array[] $x
* @param array[] $a
* @param int $a_k
* @param array[] $a
*/
function grad($x, $a, $a_k) {
if (count($a) != 3) die ("Wrong number of elements in array a");
if (count($x) != 2) die ("Wrong number of elements in array x");
if ($a_k < 3) die ("a_k=".$a_k);
$ox = $a[0];
$oy = $a[1];
$s = $a[2];
$dx = ($x[0] - $ox);
$dy = ($x[1] - $oy);
if ($a_k == 0)
return -2.*$s*$s*$dx;
elseif ($a_k == 1)
return -2.*$s*$s*$dy;
else
return 2.*$s*($dx*$dx + $dy*$dy);
} // function grad()
/**
* @return array[] $a
*/
function initial() {
$a[0] = 0.05;
$a[1] = 0.1;
$a[2] = 1.0;
return $a;
} // function initial()
/**
* @return Object[] $a
*/
function testdata() {
$npts = 25;
$a[0] = 0.;
$a[1] = 0.;
$a[2] = 0.9;
$i = 0;
for ($r = -2; $r <= 2; ++$r) {
for ($c = -2; $c <= 2; ++$c) {
$x[$i][0] = $c;
$x[$i][1] = $r;
$y[$i] = $this->val($x[$i], $a);
print("Quad ".$c.",".$r." -> ".$y[$i]."<br />");
$s[$i] = 1.;
++$i;
}
}
print("quad x= ");
$qx = new Matrix($x);
$qx->print(10, 2);
print("quad y= ");
$qy = new Matrix($y, $npts);
$qy->print(10, 2);
$o[0] = $x;
$o[1] = $a;
$o[2] = $y;
$o[3] = $s;
return $o;
} // function testdata()
} // class LMQuadTest

View File

@ -0,0 +1,59 @@
<?php
require_once "../Matrix.php";
/**
* Given n points (x0,y0)...(xn-1,yn-1), the following methid computes
* the polynomial factors of the n-1't degree polynomial passing through
* the n points.
*
* Example: Passing in three points (2,3) (1,4) and (3,7) will produce
* the results [2.5, -8.5, 10] which means that the points are on the
* curve y = 2.5x² - 8.5x + 10.
*
* @see http://geosoft.no/software/lagrange/LagrangeInterpolation.java.html
* @author Jacob Dreyer
* @author Paul Meagher (port to PHP and minor changes)
*
* @param x[] float
* @param y[] float
*/
class LagrangeInterpolation {
public function findPolynomialFactors($x, $y) {
$n = count($x);
$data = array(); // double[n][n];
$rhs = array(); // double[n];
for ($i = 0; $i < $n; ++$i) {
$v = 1;
for ($j = 0; $j < $n; ++$j) {
$data[$i][$n-$j-1] = $v;
$v *= $x[$i];
}
$rhs[$i] = $y[$i];
}
// Solve m * s = b
$m = new Matrix($data);
$b = new Matrix($rhs, $n);
$s = $m->solve($b);
return $s->getRowPackedCopy();
} // function findPolynomialFactors()
} // class LagrangeInterpolation
$x = array(2.0, 1.0, 3.0);
$y = array(3.0, 4.0, 7.0);
$li = new LagrangeInterpolation;
$f = $li->findPolynomialFactors($x, $y);
for ($i = 0; $i < 3; ++$i) {
echo $f[$i]."<br />";
}

View File

@ -0,0 +1,59 @@
<?php
require_once "../Matrix.php";
/**
* Given n points (x0,y0)...(xn-1,yn-1), the following method computes
* the polynomial factors of the n-1't degree polynomial passing through
* the n points.
*
* Example: Passing in three points (2,3) (1,4) and (3,7) will produce
* the results [2.5, -8.5, 10] which means that the points are on the
* curve y = 2.5x² - 8.5x + 10.
*
* @see http://geosoft.no/software/lagrange/LagrangeInterpolation.java.html
* @see http://source.freehep.org/jcvsweb/ilc/LCSIM/wdview/lcsim/src/org/lcsim/fit/polynomial/PolynomialFitter.java
* @author Jacob Dreyer
* @author Paul Meagher (port to PHP and minor changes)
*
* @param x[] float
* @param y[] float
*/
class LagrangeInterpolation {
public function findPolynomialFactors($x, $y) {
$n = count($x);
$data = array(); // double[n][n];
$rhs = array(); // double[n];
for ($i = 0; $i < $n; ++$i) {
$v = 1;
for ($j = 0; $j < $n; ++$j) {
$data[$i][$n-$j-1] = $v;
$v *= $x[$i];
}
$rhs[$i] = $y[$i];
}
// Solve m * s = b
$m = new Matrix($data);
$b = new Matrix($rhs, $n);
$s = $m->solve($b);
return $s->getRowPackedCopy();
} // function findPolynomialFactors()
} // class LagrangeInterpolation
$x = array(2.0, 1.0, 3.0);
$y = array(3.0, 4.0, 7.0);
$li = new LagrangeInterpolation;
$f = $li->findPolynomialFactors($x, $y);
for ($i = 0; $i < 3; ++$i) {
echo $f[$i]."<br />";
}

View File

@ -0,0 +1,185 @@
<?php
// Levenberg-Marquardt in PHP
// http://www.idiom.com/~zilla/Computer/Javanumeric/LM.java
class LevenbergMarquardt {
/**
* Calculate the current sum-squared-error
*
* Chi-squared is the distribution of squared Gaussian errors,
* thus the name.
*
* @param double[][] $x
* @param double[] $a
* @param double[] $y,
* @param double[] $s,
* @param object $f
*/
function chiSquared($x, $a, $y, $s, $f) {
$npts = count($y);
$sum = 0.0;
for ($i = 0; $i < $npts; ++$i) {
$d = $y[$i] - $f->val($x[$i], $a);
$d = $d / $s[$i];
$sum = $sum + ($d*$d);
}
return $sum;
} // function chiSquared()
/**
* Minimize E = sum {(y[k] - f(x[k],a)) / s[k]}^2
* The individual errors are optionally scaled by s[k].
* Note that LMfunc implements the value and gradient of f(x,a),
* NOT the value and gradient of E with respect to a!
*
* @param x array of domain points, each may be multidimensional
* @param y corresponding array of values
* @param a the parameters/state of the model
* @param vary false to indicate the corresponding a[k] is to be held fixed
* @param s2 sigma^2 for point i
* @param lambda blend between steepest descent (lambda high) and
* jump to bottom of quadratic (lambda zero).
* Start with 0.001.
* @param termepsilon termination accuracy (0.01)
* @param maxiter stop and return after this many iterations if not done
* @param verbose set to zero (no prints), 1, 2
*
* @return the new lambda for future iterations.
* Can use this and maxiter to interleave the LM descent with some other
* task, setting maxiter to something small.
*/
function solve($x, $a, $y, $s, $vary, $f, $lambda, $termepsilon, $maxiter, $verbose) {
$npts = count($y);
$nparm = count($a);
if ($verbose > 0) {
print("solve x[".count($x)."][".count($x[0])."]");
print(" a[".count($a)."]");
println(" y[".count(length)."]");
}
$e0 = $this->chiSquared($x, $a, $y, $s, $f);
//double lambda = 0.001;
$done = false;
// g = gradient, H = hessian, d = step to minimum
// H d = -g, solve for d
$H = array();
$g = array();
//double[] d = new double[nparm];
$oos2 = array();
for($i = 0; $i < $npts; ++$i) {
$oos2[$i] = 1./($s[$i]*$s[$i]);
}
$iter = 0;
$term = 0; // termination count test
do {
++$iter;
// hessian approximation
for( $r = 0; $r < $nparm; ++$r) {
for( $c = 0; $c < $nparm; ++$c) {
for( $i = 0; $i < $npts; ++$i) {
if ($i == 0) $H[$r][$c] = 0.;
$xi = $x[$i];
$H[$r][$c] += ($oos2[$i] * $f->grad($xi, $a, $r) * $f->grad($xi, $a, $c));
} //npts
} //c
} //r
// boost diagonal towards gradient descent
for( $r = 0; $r < $nparm; ++$r)
$H[$r][$r] *= (1. + $lambda);
// gradient
for( $r = 0; $r < $nparm; ++$r) {
for( $i = 0; $i < $npts; ++$i) {
if ($i == 0) $g[$r] = 0.;
$xi = $x[$i];
$g[$r] += ($oos2[$i] * ($y[$i]-$f->val($xi,$a)) * $f->grad($xi, $a, $r));
}
} //npts
// scale (for consistency with NR, not necessary)
if ($false) {
for( $r = 0; $r < $nparm; ++$r) {
$g[$r] = -0.5 * $g[$r];
for( $c = 0; $c < $nparm; ++$c) {
$H[$r][$c] *= 0.5;
}
}
}
// solve H d = -g, evaluate error at new location
//double[] d = DoubleMatrix.solve(H, g);
// double[] d = (new Matrix(H)).lu().solve(new Matrix(g, nparm)).getRowPackedCopy();
//double[] na = DoubleVector.add(a, d);
// double[] na = (new Matrix(a, nparm)).plus(new Matrix(d, nparm)).getRowPackedCopy();
// double e1 = chiSquared(x, na, y, s, f);
// if (verbose > 0) {
// System.out.println("\n\niteration "+iter+" lambda = "+lambda);
// System.out.print("a = ");
// (new Matrix(a, nparm)).print(10, 2);
// if (verbose > 1) {
// System.out.print("H = ");
// (new Matrix(H)).print(10, 2);
// System.out.print("g = ");
// (new Matrix(g, nparm)).print(10, 2);
// System.out.print("d = ");
// (new Matrix(d, nparm)).print(10, 2);
// }
// System.out.print("e0 = " + e0 + ": ");
// System.out.print("moved from ");
// (new Matrix(a, nparm)).print(10, 2);
// System.out.print("e1 = " + e1 + ": ");
// if (e1 < e0) {
// System.out.print("to ");
// (new Matrix(na, nparm)).print(10, 2);
// } else {
// System.out.println("move rejected");
// }
// }
// termination test (slightly different than NR)
// if (Math.abs(e1-e0) > termepsilon) {
// term = 0;
// } else {
// term++;
// if (term == 4) {
// System.out.println("terminating after " + iter + " iterations");
// done = true;
// }
// }
// if (iter >= maxiter) done = true;
// in the C++ version, found that changing this to e1 >= e0
// was not a good idea. See comment there.
//
// if (e1 > e0 || Double.isNaN(e1)) { // new location worse than before
// lambda *= 10.;
// } else { // new location better, accept new parameters
// lambda *= 0.1;
// e0 = e1;
// // simply assigning a = na will not get results copied back to caller
// for( int i = 0; i < nparm; i++ ) {
// if (vary[i]) a[i] = na[i];
// }
// }
} while(!$done);
return $lambda;
} // function solve()
} // class LevenbergMarquardt

View File

@ -0,0 +1,182 @@
<?php
/**
* @package JAMA
*/
require_once "../Matrix.php";
/**
* Example of use of Matrix Class, featuring magic squares.
*/
class MagicSquareExample {
/**
* Generate magic square test matrix.
* @param int n dimension of matrix
*/
function magic($n) {
// Odd order
if (($n % 2) == 1) {
$a = ($n+1)/2;
$b = ($n+1);
for ($j = 0; $j < $n; ++$j)
for ($i = 0; $i < $n; ++$i)
$M[$i][$j] = $n*(($i+$j+$a) % $n) + (($i+2*$j+$b) % $n) + 1;
// Doubly Even Order
} else if (($n % 4) == 0) {
for ($j = 0; $j < $n; ++$j) {
for ($i = 0; $i < $n; ++$i) {
if ((($i+1)/2)%2 == (($j+1)/2)%2)
$M[$i][$j] = $n*$n-$n*$i-$j;
else
$M[$i][$j] = $n*$i+$j+1;
}
}
// Singly Even Order
} else {
$p = $n/2;
$k = ($n-2)/4;
$A = $this->magic($p);
$M = array();
for ($j = 0; $j < $p; ++$j) {
for ($i = 0; $i < $p; ++$i) {
$aij = $A->get($i,$j);
$M[$i][$j] = $aij;
$M[$i][$j+$p] = $aij + 2*$p*$p;
$M[$i+$p][$j] = $aij + 3*$p*$p;
$M[$i+$p][$j+$p] = $aij + $p*$p;
}
}
for ($i = 0; $i < $p; ++$i) {
for ($j = 0; $j < $k; ++$j) {
$t = $M[$i][$j];
$M[$i][$j] = $M[$i+$p][$j];
$M[$i+$p][$j] = $t;
}
for ($j = $n-$k+1; $j < $n; ++$j) {
$t = $M[$i][$j];
$M[$i][$j] = $M[$i+$p][$j];
$M[$i+$p][$j] = $t;
}
}
$t = $M[$k][0]; $M[$k][0] = $M[$k+$p][0]; $M[$k+$p][0] = $t;
$t = $M[$k][$k]; $M[$k][$k] = $M[$k+$p][$k]; $M[$k+$p][$k] = $t;
}
return new Matrix($M);
}
/**
* Simple function to replicate PHP 5 behaviour
*/
function microtime_float() {
list($usec, $sec) = explode(" ", microtime());
return ((float)$usec + (float)$sec);
}
/**
* Tests LU, QR, SVD and symmetric Eig decompositions.
*
* n = order of magic square.
* trace = diagonal sum, should be the magic sum, (n^3 + n)/2.
* max_eig = maximum eigenvalue of (A + A')/2, should equal trace.
* rank = linear algebraic rank, should equal n if n is odd,
* be less than n if n is even.
* cond = L_2 condition number, ratio of singular values.
* lu_res = test of LU factorization, norm1(L*U-A(p,:))/(n*eps).
* qr_res = test of QR factorization, norm1(Q*R-A)/(n*eps).
*/
function main() {
?>
<p>Test of Matrix Class, using magic squares.</p>
<p>See MagicSquareExample.main() for an explanation.</p>
<table border='1' cellspacing='0' cellpadding='4'>
<tr>
<th>n</th>
<th>trace</th>
<th>max_eig</th>
<th>rank</th>
<th>cond</th>
<th>lu_res</th>
<th>qr_res</th>
</tr>
<?php
$start_time = $this->microtime_float();
$eps = pow(2.0,-52.0);
for ($n = 3; $n <= 6; ++$n) {
echo "<tr>";
echo "<td align='right'>$n</td>";
$M = $this->magic($n);
$t = (int) $M->trace();
echo "<td align='right'>$t</td>";
$O = $M->plus($M->transpose());
$E = new EigenvalueDecomposition($O->times(0.5));
$d = $E->getRealEigenvalues();
echo "<td align='right'>".$d[$n-1]."</td>";
$r = $M->rank();
echo "<td align='right'>".$r."</td>";
$c = $M->cond();
if ($c < 1/$eps)
echo "<td align='right'>".sprintf("%.3f",$c)."</td>";
else
echo "<td align='right'>Inf</td>";
$LU = new LUDecomposition($M);
$L = $LU->getL();
$U = $LU->getU();
$p = $LU->getPivot();
// Java version: R = L.times(U).minus(M.getMatrix(p,0,n-1));
$S = $L->times($U);
$R = $S->minus($M->getMatrix($p,0,$n-1));
$res = $R->norm1()/($n*$eps);
echo "<td align='right'>".sprintf("%.3f",$res)."</td>";
$QR = new QRDecomposition($M);
$Q = $QR->getQ();
$R = $QR->getR();
$S = $Q->times($R);
$R = $S->minus($M);
$res = $R->norm1()/($n*$eps);
echo "<td align='right'>".sprintf("%.3f",$res)."</td>";
echo "</tr>";
}
echo "<table>";
echo "<br />";
$stop_time = $this->microtime_float();
$etime = $stop_time - $start_time;
echo "<p>Elapsed time is ". sprintf("%.4f",$etime) ." seconds.</p>";
}
}
$magic = new MagicSquareExample();
$magic->main();
?>

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,263 @@
<?php
error_reporting(E_ALL);
/**
* @package JAMA
*/
require_once '../Matrix.php';
require_once 'Stats.php';
/**
* Example of use of Matrix Class, featuring magic squares.
*/
class Benchmark {
public $stat;
/**
* Simple function to replicate PHP 5 behaviour
*/
function microtime_float() {
list($usec, $sec) = explode(" ", microtime());
return ((float)$usec + (float)$sec);
} // function microtime_float()
function displayStats($times = null) {
$this->stat->setData($times);
$stats = $this->stat->calcFull();
echo '<table style="margin-left:32px;">';
echo '<tr><td style="text-align:right;"><b>n:</b><td style="text-align:right;">' . $stats['count'] . ' </td></tr>';
echo '<tr><td style="text-align:right;"><b>Mean:</b><td style="text-align:right;">' . $stats['mean'] . ' </td></tr>';
echo '<tr><td style="text-align:right;"><b>Min.:</b><td style="text-align:right;">' . $stats['min'] . ' </td></tr>';
echo '<tr><td style="text-align:right;"><b>Max.:</b><td style="text-align:right;">' . $stats['max'] . ' </td></tr>';
echo '<tr><td style="text-align:right;"><b>&sigma;:</b><td style="text-align:right;">' . $stats['stdev'] . ' </td></tr>';
echo '<tr><td style="text-align:right;"><b>Variance:</b><td style="text-align:right;">' . $stats['variance'] . ' </td></tr>';
echo '<tr><td style="text-align:right;"><b>Range:</b><td style="text-align:right;">' . $stats['range'] . ' </td></tr>';
echo '</table>';
return $stats;
} // function displayStats()
function runEig($n = 4, $t = 100) {
$times = array();
for ($i = 0; $i < $t; ++$i) {
$M = Matrix::random($n, $n);
$start_time = $this->microtime_float();
$E = new EigenvalueDecomposition($M);
$stop_time = $this->microtime_float();
$times[] = $stop_time - $start_time;
}
return $times;
} // function runEig()
function runLU($n = 4, $t = 100) {
$times = array();
for ($i = 0; $i < $t; ++$i) {
$M = Matrix::random($n, $n);
$start_time = $this->microtime_float();
$E = new LUDecomposition($M);
$stop_time = $this->microtime_float();
$times[] = $stop_time - $start_time;
}
return $times;
} // function runLU()
function runQR($n = 4, $t = 100) {
$times = array();
for ($i = 0; $i < $t; ++$i) {
$M = Matrix::random($n, $n);
$start_time = $this->microtime_float();
$E = new QRDecomposition($M);
$stop_time = $this->microtime_float();
$times[] = $stop_time - $start_time;
}
return $times;
} // function runQR()
function runCholesky($n = 4, $t = 100) {
$times = array();
for ($i = 0; $i < $t; ++$i) {
$M = Matrix::random($n, $n);
$start_time = $this->microtime_float();
$E = new CholeskyDecomposition($M);
$stop_time = $this->microtime_float();
$times[] = $stop_time - $start_time;
}
return $times;
} // function runCholesky()
function runSVD($n = 4, $t = 100) {
$times = array();
for ($i = 0; $i < $t; ++$i) {
$M = Matrix::random($n, $n);
$start_time = $this->microtime_float();
$E = new SingularValueDecomposition($M);
$stop_time = $this->microtime_float();
$times[] = $stop_time - $start_time;
}
return $times;
} // function runSVD()
function run() {
$n = 8;
$t = 16;
$sum = 0;
echo "<b>Cholesky decomposition: $t random {$n}x{$n} matrices</b><br />";
$r = $this->displayStats($this->runCholesky($n, $t));
$sum += $r['mean'] * $n;
echo '<hr />';
echo "<b>Eigenvalue decomposition: $t random {$n}x{$n} matrices</b><br />";
$r = $this->displayStats($this->runEig($n, $t));
$sum += $r['mean'] * $n;
echo '<hr />';
echo "<b>LU decomposition: $t random {$n}x{$n} matrices</b><br />";
$r = $this->displayStats($this->runLU($n, $t));
$sum += $r['mean'] * $n;
echo '<hr />';
echo "<b>QR decomposition: $t random {$n}x{$n} matrices</b><br />";
$r = $this->displayStats($this->runQR($n, $t));
$sum += $r['mean'] * $n;
echo '<hr />';
echo "<b>Singular Value decomposition: $t random {$n}x{$n} matrices</b><br />";
$r = $this->displayStats($this->runSVD($n, $t));
$sum += $r['mean'] * $n;
return $sum;
} // function run()
public function __construct() {
$this->stat = new Base();
} // function Benchmark()
} // class Benchmark (end MagicSquareExample)
$benchmark = new Benchmark();
switch($_REQUEST['decomposition']) {
case 'cholesky':
$m = array();
for ($i = 2; $i <= 8; $i *= 2) {
$t = 32 / $i;
echo "<b>Cholesky decomposition: $t random {$i}x{$i} matrices</b><br />";
$s = $benchmark->displayStats($benchmark->runCholesky($i, $t));
$m[$i] = $s['mean'];
echo "<br />";
}
echo '<pre>';
foreach($m as $x => $y) {
echo "$x\t" . 1000*$y . "\n";
}
echo '</pre>';
break;
case 'eigenvalue':
$m = array();
for ($i = 2; $i <= 8; $i *= 2) {
$t = 32 / $i;
echo "<b>Eigenvalue decomposition: $t random {$i}x{$i} matrices</b><br />";
$s = $benchmark->displayStats($benchmark->runEig($i, $t));
$m[$i] = $s['mean'];
echo "<br />";
}
echo '<pre>';
foreach($m as $x => $y) {
echo "$x\t" . 1000*$y . "\n";
}
echo '</pre>';
break;
case 'lu':
$m = array();
for ($i = 2; $i <= 8; $i *= 2) {
$t = 32 / $i;
echo "<b>LU decomposition: $t random {$i}x{$i} matrices</b><br />";
$s = $benchmark->displayStats($benchmark->runLU($i, $t));
$m[$i] = $s['mean'];
echo "<br />";
}
echo '<pre>';
foreach($m as $x => $y) {
echo "$x\t" . 1000*$y . "\n";
}
echo '</pre>';
break;
case 'qr':
$m = array();
for ($i = 2; $i <= 8; $i *= 2) {
$t = 32 / $i;
echo "<b>QR decomposition: $t random {$i}x{$i} matrices</b><br />";
$s = $benchmark->displayStats($benchmark->runQR($i, $t));
$m[$i] = $s['mean'];
echo "<br />";
}
echo '<pre>';
foreach($m as $x => $y) {
echo "$x\t" . 1000*$y . "\n";
}
echo '</pre>';
break;
case 'svd':
$m = array();
for($i = 2; $i <= 8; $i *= 2) {
$t = 32 / $i;
echo "<b>Singular value decomposition: $t random {$i}x{$i} matrices</b><br />";
$s = $benchmark->displayStats($benchmark->runSVD($i, $t));
$m[$i] = $s['mean'];
echo "<br />";
}
echo '<pre>';
foreach($m as $x => $y) {
echo "$x\t" . 1000*$y . "\n";
}
echo '</pre>';
break;
case 'all':
$s = $benchmark->run();
print("<br /><b>Total<b>: {$s}s<br />");
break;
default:
?>
<ul>
<li><a href="benchmark.php?decomposition=all">Complete Benchmark</a>
<ul>
<li><a href="benchmark.php?decomposition=cholesky">Cholesky</a></li>
<li><a href="benchmark.php?decomposition=eigenvalue">Eigenvalue</a></li>
<li><a href="benchmark.php?decomposition=lu">LU</a></li>
<li><a href="benchmark.php?decomposition=qr">QR</a></li>
<li><a href="benchmark.php?decomposition=svd">Singular Value</a></li>
</ul>
</li>
</ul>
<?php
break;
}

View File

@ -0,0 +1,73 @@
<?php
require_once "../Matrix.php";
/*
* @package JAMA
* @author Michael Bommarito
* @author Paul Meagher
* @version 0.1
*
* Function to fit an order n polynomial function through
* a series of x-y data points using least squares.
*
* @param $X array x values
* @param $Y array y values
* @param $n int order of polynomial to be used for fitting
* @returns array $coeffs of polynomial coefficients
* Pre-Conditions: the system is not underdetermined: sizeof($X) > $n+1
*/
function polyfit($X, $Y, $n) {
for ($i = 0; $i < sizeof($X); ++$i)
for ($j = 0; $j <= $n; ++$j)
$A[$i][$j] = pow($X[$i], $j);
for ($i=0; $i < sizeof($Y); ++$i)
$B[$i] = array($Y[$i]);
$matrixA = new Matrix($A);
$matrixB = new Matrix($B);
$C = $matrixA->solve($matrixB);
return $C->getMatrix(0, $n, 0, 1);
}
function printpoly( $C = null ) {
for($i = $C->m - 1; $i >= 0; --$i) {
$r = $C->get($i, 0);
if ( abs($r) <= pow(10, -9) )
$r = 0;
if ($i == $C->m - 1)
echo $r . "x<sup>$i</sup>";
else if ($i < $C->m - 1)
echo " + " . $r . "x<sup>$i</sup>";
else if ($i == 0)
echo " + " . $r;
}
}
$X = array(0,1,2,3,4,5);
$Y = array(4,3,12,67,228, 579);
$points = new Matrix(array($X, $Y));
$points->toHTML();
printpoly(polyfit($X, $Y, 4));
echo '<hr />';
$X = array(0,1,2,3,4,5);
$Y = array(1,2,5,10,17, 26);
$points = new Matrix(array($X, $Y));
$points->toHTML();
printpoly(polyfit($X, $Y, 2));
echo '<hr />';
$X = array(0,1,2,3,4,5,6);
$Y = array(-90,-104,-178,-252,-26, 1160, 4446);
$points = new Matrix(array($X, $Y));
$points->toHTML();
printpoly(polyfit($X, $Y, 5));
echo '<hr />';
$X = array(0,1,2,3,4);
$Y = array(mt_rand(0, 10), mt_rand(40, 80), mt_rand(240, 400), mt_rand(1800, 2215), mt_rand(8000, 9000));
$points = new Matrix(array($X, $Y));
$points->toHTML();
printpoly(polyfit($X, $Y, 3));
?>

View File

@ -0,0 +1,78 @@
<?php
include "../Matrix.php";
/**
* Tiling of matrix X in [rowWise by colWise] dimension. Tiling
* creates a larger matrix than the original data X. Example, if
* X is to be tiled in a [3 x 4] manner, then:
*
* / \
* | X X X X |
* C = | X X X X |
* | X X X X |
* \ /
*
* @param X Matrix
* @param rowWise int
* @param colWise int
* @return Matrix
*/
function tile(&$X, $rowWise, $colWise){
$xArray = $X->getArray();
print_r($xArray);
$countRow = 0;
$countColumn = 0;
$m = $X->getRowDimension();
$n = $X->getColumnDimension();
if( $rowWise<1 || $colWise<1 ){
die("tile : Array index is out-of-bound.");
}
$newRowDim = $m*$rowWise;
$newColDim = $n*$colWise;
$result = array();
for($i=0 ; $i<$newRowDim; ++$i) {
$holder = array();
for($j=0 ; $j<$newColDim ; ++$j) {
$holder[$j] = $xArray[$countRow][$countColumn++];
// reset the column-index to zero to avoid reference to out-of-bound index in xArray[][]
if($countColumn == $n) { $countColumn = 0; }
} // end for
++$countRow;
// reset the row-index to zero to avoid reference to out-of-bound index in xArray[][]
if($countRow == $m) { $countRow = 0; }
$result[$i] = $holder;
} // end for
return new Matrix($result);
}
$X =array(1,2,3,4,5,6,7,8,9);
$nRow = 3;
$nCol = 3;
$tiled_matrix = tile(new Matrix($X), $nRow, $nCol);
echo "<pre>";
print_r($tiled_matrix);
echo "</pre>";
?>

View File

@ -0,0 +1,415 @@
<?php
require_once "../Matrix.php";
class TestMatrix {
function TestMatrix() {
// define test variables
$errorCount = 0;
$warningCount = 0;
$columnwise = array(1.,2.,3.,4.,5.,6.,7.,8.,9.,10.,11.,12.);
$rowwise = array(1.,4.,7.,10.,2.,5.,8.,11.,3.,6.,9.,12.);
$avals = array(array(1.,4.,7.,10.),array(2.,5.,8.,11.),array(3.,6.,9.,12.));
$rankdef = $avals;
$tvals = array(array(1.,2.,3.),array(4.,5.,6.),array(7.,8.,9.),array(10.,11.,12.));
$subavals = array(array(5.,8.,11.),array(6.,9.,12.));
$rvals = array(array(1.,4.,7.),array(2.,5.,8.,11.),array(3.,6.,9.,12.));
$pvals = array(array(1.,1.,1.),array(1.,2.,3.),array(1.,3.,6.));
$ivals = array(array(1.,0.,0.,0.),array(0.,1.,0.,0.),array(0.,0.,1.,0.));
$evals = array(array(0.,1.,0.,0.),array(1.,0.,2.e-7,0.),array(0.,-2.e-7,0.,1.),array(0.,0.,1.,0.));
$square = array(array(166.,188.,210.),array(188.,214.,240.),array(210.,240.,270.));
$sqSolution = array(array(13.),array(15.));
$condmat = array(array(1.,3.),array(7.,9.));
$rows = 3;
$cols = 4;
$invalidID = 5; /* should trigger bad shape for construction with val */
$raggedr = 0; /* (raggedr,raggedc) should be out of bounds in ragged array */
$raggedc = 4;
$validID = 3; /* leading dimension of intended test Matrices */
$nonconformld = 4; /* leading dimension which is valid, but nonconforming */
$ib = 1; /* index ranges for sub Matrix */
$ie = 2;
$jb = 1;
$je = 3;
$rowindexset = array(1,2);
$badrowindexset = array(1,3);
$columnindexset = array(1,2,3);
$badcolumnindexset = array(1,2,4);
$columnsummax = 33.;
$rowsummax = 30.;
$sumofdiagonals = 15;
$sumofsquares = 650;
/**
* Test matrix methods
*/
/**
* Constructors and constructor-like methods:
*
* Matrix(double[], int)
* Matrix(double[][])
* Matrix(int, int)
* Matrix(int, int, double)
* Matrix(int, int, double[][])
* constructWithCopy(double[][])
* random(int,int)
* identity(int)
*/
echo "<p>Testing constructors and constructor-like methods...</p>";
$A = new Matrix($columnwise, 3);
if($A instanceof Matrix) {
$this->try_success("Column-packed constructor...");
} else
$errorCount = $this->try_failure($errorCount, "Column-packed constructor...", "Unable to construct Matrix");
$T = new Matrix($tvals);
if($T instanceof Matrix)
$this->try_success("2D array constructor...");
else
$errorCount = $this->try_failure($errorCount, "2D array constructor...", "Unable to construct Matrix");
$A = new Matrix($columnwise, $validID);
$B = new Matrix($avals);
$tmp = $B->get(0,0);
$avals[0][0] = 0.0;
$C = $B->minus($A);
$avals[0][0] = $tmp;
$B = Matrix::constructWithCopy($avals);
$tmp = $B->get(0,0);
$avals[0][0] = 0.0;
/** check that constructWithCopy behaves properly **/
if ( ( $tmp - $B->get(0,0) ) != 0.0 )
$errorCount = $this->try_failure($errorCount,"constructWithCopy... ","copy not effected... data visible outside");
else
$this->try_success("constructWithCopy... ","");
$I = new Matrix($ivals);
if ( $this->checkMatrices($I,Matrix::identity(3,4)) )
$this->try_success("identity... ","");
else
$errorCount = $this->try_failure($errorCount,"identity... ","identity Matrix not successfully created");
/**
* Access Methods:
*
* getColumnDimension()
* getRowDimension()
* getArray()
* getArrayCopy()
* getColumnPackedCopy()
* getRowPackedCopy()
* get(int,int)
* getMatrix(int,int,int,int)
* getMatrix(int,int,int[])
* getMatrix(int[],int,int)
* getMatrix(int[],int[])
* set(int,int,double)
* setMatrix(int,int,int,int,Matrix)
* setMatrix(int,int,int[],Matrix)
* setMatrix(int[],int,int,Matrix)
* setMatrix(int[],int[],Matrix)
*/
print "<p>Testing access methods...</p>";
$B = new Matrix($avals);
if($B->getRowDimension() == $rows)
$this->try_success("getRowDimension...");
else
$errorCount = $this->try_failure($errorCount, "getRowDimension...");
if($B->getColumnDimension() == $cols)
$this->try_success("getColumnDimension...");
else
$errorCount = $this->try_failure($errorCount, "getColumnDimension...");
$barray = $B->getArray();
if($this->checkArrays($barray, $avals))
$this->try_success("getArray...");
else
$errorCount = $this->try_failure($errorCount, "getArray...");
$bpacked = $B->getColumnPackedCopy();
if($this->checkArrays($bpacked, $columnwise))
$this->try_success("getColumnPackedCopy...");
else
$errorCount = $this->try_failure($errorCount, "getColumnPackedCopy...");
$bpacked = $B->getRowPackedCopy();
if($this->checkArrays($bpacked, $rowwise))
$this->try_success("getRowPackedCopy...");
else
$errorCount = $this->try_failure($errorCount, "getRowPackedCopy...");
/**
* Array-like methods:
* minus
* minusEquals
* plus
* plusEquals
* arrayLeftDivide
* arrayLeftDivideEquals
* arrayRightDivide
* arrayRightDivideEquals
* arrayTimes
* arrayTimesEquals
* uminus
*/
print "<p>Testing array-like methods...</p>";
/**
* I/O methods:
* read
* print
* serializable:
* writeObject
* readObject
*/
print "<p>Testing I/O methods...</p>";
/**
* Test linear algebra methods
*/
echo "<p>Testing linear algebra methods...<p>";
$A = new Matrix($columnwise, 3);
if( $this->checkMatrices($A->transpose(), $T) )
$this->try_success("Transpose check...");
else
$errorCount = $this->try_failure($errorCount, "Transpose check...", "Matrices are not equal");
if($this->checkScalars($A->norm1(), $columnsummax))
$this->try_success("Maximum column sum...");
else
$errorCount = $this->try_failure($errorCount, "Maximum column sum...", "Incorrect: " . $A->norm1() . " != " . $columnsummax);
if($this->checkScalars($A->normInf(), $rowsummax))
$this->try_success("Maximum row sum...");
else
$errorCount = $this->try_failure($errorCount, "Maximum row sum...", "Incorrect: " . $A->normInf() . " != " . $rowsummax );
if($this->checkScalars($A->normF(), sqrt($sumofsquares)))
$this->try_success("Frobenius norm...");
else
$errorCount = $this->try_failure($errorCount, "Frobenius norm...", "Incorrect:" . $A->normF() . " != " . sqrt($sumofsquares));
if($this->checkScalars($A->trace(), $sumofdiagonals))
$this->try_success("Matrix trace...");
else
$errorCount = $this->try_failure($errorCount, "Matrix trace...", "Incorrect: " . $A->trace() . " != " . $sumofdiagonals);
$B = $A->getMatrix(0, $A->getRowDimension(), 0, $A->getRowDimension());
if( $B->det() == 0 )
$this->try_success("Matrix determinant...");
else
$errorCount = $this->try_failure($errorCount, "Matrix determinant...", "Incorrect: " . $B->det() . " != " . 0);
$A = new Matrix($columnwise,3);
$SQ = new Matrix($square);
if ($this->checkMatrices($SQ, $A->times($A->transpose())))
$this->try_success("times(Matrix)...");
else {
$errorCount = $this->try_failure($errorCount, "times(Matrix)...", "Unable to multiply matrices");
$SQ->toHTML();
$AT->toHTML();
}
$A = new Matrix($columnwise, 4);
$QR = $A->qr();
$R = $QR->getR();
$Q = $QR->getQ();
if($this->checkMatrices($A, $Q->times($R)))
$this->try_success("QRDecomposition...","");
else
$errorCount = $this->try_failure($errorCount,"QRDecomposition...","incorrect qr decomposition calculation");
$A = new Matrix($columnwise, 4);
$SVD = $A->svd();
$U = $SVD->getU();
$S = $SVD->getS();
$V = $SVD->getV();
if ($this->checkMatrices($A, $U->times($S->times($V->transpose()))))
$this->try_success("SingularValueDecomposition...","");
else
$errorCount = $this->try_failure($errorCount,"SingularValueDecomposition...","incorrect singular value decomposition calculation");
$n = $A->getColumnDimension();
$A = $A->getMatrix(0,$n-1,0,$n-1);
$A->set(0,0,0.);
$LU = $A->lu();
$L = $LU->getL();
if ( $this->checkMatrices($A->getMatrix($LU->getPivot(),0,$n-1), $L->times($LU->getU())) )
$this->try_success("LUDecomposition...","");
else
$errorCount = $this->try_failure($errorCount,"LUDecomposition...","incorrect LU decomposition calculation");
$X = $A->inverse();
if ( $this->checkMatrices($A->times($X),Matrix::identity(3,3)) )
$this->try_success("inverse()...","");
else
$errorCount = $this->try_failure($errorCount, "inverse()...","incorrect inverse calculation");
$DEF = new Matrix($rankdef);
if($this->checkScalars($DEF->rank(), min($DEF->getRowDimension(), $DEF->getColumnDimension())-1))
$this->try_success("Rank...");
else
$this->try_failure("Rank...", "incorrect rank calculation");
$B = new Matrix($condmat);
$SVD = $B->svd();
$singularvalues = $SVD->getSingularValues();
if($this->checkScalars($B->cond(), $singularvalues[0]/$singularvalues[min($B->getRowDimension(), $B->getColumnDimension())-1]))
$this->try_success("Condition number...");
else
$this->try_failure("Condition number...", "incorrect condition number calculation");
$SUB = new Matrix($subavals);
$O = new Matrix($SUB->getRowDimension(),1,1.0);
$SOL = new Matrix($sqSolution);
$SQ = $SUB->getMatrix(0,$SUB->getRowDimension()-1,0,$SUB->getRowDimension()-1);
if ( $this->checkMatrices($SQ->solve($SOL),$O) )
$this->try_success("solve()...","");
else
$errorCount = $this->try_failure($errorCount,"solve()...","incorrect lu solve calculation");
$A = new Matrix($pvals);
$Chol = $A->chol();
$L = $Chol->getL();
if ( $this->checkMatrices($A, $L->times($L->transpose())) )
$this->try_success("CholeskyDecomposition...","");
else
$errorCount = $this->try_failure($errorCount,"CholeskyDecomposition...","incorrect Cholesky decomposition calculation");
$X = $Chol->solve(Matrix::identity(3,3));
if ( $this->checkMatrices($A->times($X), Matrix::identity(3,3)) )
$this->try_success("CholeskyDecomposition solve()...","");
else
$errorCount = $this->try_failure($errorCount,"CholeskyDecomposition solve()...","incorrect Choleskydecomposition solve calculation");
$Eig = $A->eig();
$D = $Eig->getD();
$V = $Eig->getV();
if( $this->checkMatrices($A->times($V),$V->times($D)) )
$this->try_success("EigenvalueDecomposition (symmetric)...","");
else
$errorCount = $this->try_failure($errorCount,"EigenvalueDecomposition (symmetric)...","incorrect symmetric Eigenvalue decomposition calculation");
$A = new Matrix($evals);
$Eig = $A->eig();
$D = $Eig->getD();
$V = $Eig->getV();
if ( $this->checkMatrices($A->times($V),$V->times($D)) )
$this->try_success("EigenvalueDecomposition (nonsymmetric)...","");
else
$errorCount = $this->try_failure($errorCount,"EigenvalueDecomposition (nonsymmetric)...","incorrect nonsymmetric Eigenvalue decomposition calculation");
print("<b>{$errorCount} total errors</b>.");
}
/**
* Print appropriate messages for successful outcome try
* @param string $s
* @param string $e
*/
function try_success($s, $e = "") {
print "> ". $s ."success<br />";
if ($e != "")
print "> Message: ". $e ."<br />";
}
/**
* Print appropriate messages for unsuccessful outcome try
* @param int $count
* @param string $s
* @param string $e
* @return int incremented counter
*/
function try_failure($count, $s, $e="") {
print "> ". $s ."*** failure ***<br />> Message: ". $e ."<br />";
return ++$count;
}
/**
* Print appropriate messages for unsuccessful outcome try
* @param int $count
* @param string $s
* @param string $e
* @return int incremented counter
*/
function try_warning($count, $s, $e="") {
print "> ". $s ."*** warning ***<br />> Message: ". $e ."<br />";
return ++$count;
}
/**
* Check magnitude of difference of "scalars".
* @param float $x
* @param float $y
*/
function checkScalars($x, $y) {
$eps = pow(2.0,-52.0);
if ($x == 0 & abs($y) < 10*$eps) return;
if ($y == 0 & abs($x) < 10*$eps) return;
if (abs($x-$y) > 10 * $eps * max(abs($x),abs($y)))
return false;
else
return true;
}
/**
* Check norm of difference of "vectors".
* @param float $x[]
* @param float $y[]
*/
function checkVectors($x, $y) {
$nx = count($x);
$ny = count($y);
if ($nx == $ny)
for($i=0; $i < $nx; ++$i)
$this->checkScalars($x[$i],$y[$i]);
else
die("Attempt to compare vectors of different lengths");
}
/**
* Check norm of difference of "arrays".
* @param float $x[][]
* @param float $y[][]
*/
function checkArrays($x, $y) {
$A = new Matrix($x);
$B = new Matrix($y);
return $this->checkMatrices($A,$B);
}
/**
* Check norm of difference of "matrices".
* @param matrix $X
* @param matrix $Y
*/
function checkMatrices($X = null, $Y = null) {
if( $X == null || $Y == null )
return false;
$eps = pow(2.0,-52.0);
if ($X->norm1() == 0. & $Y->norm1() < 10*$eps) return true;
if ($Y->norm1() == 0. & $X->norm1() < 10*$eps) return true;
$A = $X->minus($Y);
if ($A->norm1() > 1000 * $eps * max($X->norm1(),$Y->norm1()))
die("The norm of (X-Y) is too large: ".$A->norm1());
else
return true;
}
}
$test = new TestMatrix;
?>

View File

@ -0,0 +1,82 @@
<?php
/**
* @package JAMA
*
* Error handling
* @author Michael Bommarito
* @version 01292005
*/
//Language constant
define('JAMALANG', 'EN');
//All errors may be defined by the following format:
//define('ExceptionName', N);
//$error['lang'][ExceptionName] = 'Error message';
$error = array();
/*
I've used Babelfish and a little poor knowledge of Romance/Germanic languages for the translations here.
Feel free to correct anything that looks amiss to you.
*/
define('PolymorphicArgumentException', -1);
$error['EN'][PolymorphicArgumentException] = "Invalid argument pattern for polymorphic function.";
$error['FR'][PolymorphicArgumentException] = "Modèle inadmissible d'argument pour la fonction polymorphe.".
$error['DE'][PolymorphicArgumentException] = "Unzulässiges Argumentmuster für polymorphe Funktion.";
define('ArgumentTypeException', -2);
$error['EN'][ArgumentTypeException] = "Invalid argument type.";
$error['FR'][ArgumentTypeException] = "Type inadmissible d'argument.";
$error['DE'][ArgumentTypeException] = "Unzulässige Argumentart.";
define('ArgumentBoundsException', -3);
$error['EN'][ArgumentBoundsException] = "Invalid argument range.";
$error['FR'][ArgumentBoundsException] = "Gamme inadmissible d'argument.";
$error['DE'][ArgumentBoundsException] = "Unzulässige Argumentstrecke.";
define('MatrixDimensionException', -4);
$error['EN'][MatrixDimensionException] = "Matrix dimensions are not equal.";
$error['FR'][MatrixDimensionException] = "Les dimensions de Matrix ne sont pas égales.";
$error['DE'][MatrixDimensionException] = "Matrixmaße sind nicht gleich.";
define('PrecisionLossException', -5);
$error['EN'][PrecisionLossException] = "Significant precision loss detected.";
$error['FR'][PrecisionLossException] = "Perte significative de précision détectée.";
$error['DE'][PrecisionLossException] = "Bedeutender Präzision Verlust ermittelte.";
define('MatrixSPDException', -6);
$error['EN'][MatrixSPDException] = "Can only perform operation on symmetric positive definite matrix.";
$error['FR'][MatrixSPDException] = "Perte significative de précision détectée.";
$error['DE'][MatrixSPDException] = "Bedeutender Präzision Verlust ermittelte.";
define('MatrixSingularException', -7);
$error['EN'][MatrixSingularException] = "Can only perform operation on singular matrix.";
define('MatrixRankException', -8);
$error['EN'][MatrixRankException] = "Can only perform operation on full-rank matrix.";
define('ArrayLengthException', -9);
$error['EN'][ArrayLengthException] = "Array length must be a multiple of m.";
define('RowLengthException', -10);
$error['EN'][RowLengthException] = "All rows must have the same length.";
/**
* Custom error handler
* @param int $num Error number
*/
function JAMAError($errorNumber = null) {
global $error;
if (isset($errorNumber)) {
if (isset($error[JAMALANG][$errorNumber])) {
return $error[JAMALANG][$errorNumber];
} else {
return $error['EN'][$errorNumber];
}
} else {
return ("Invalid argument to JAMAError()");
}
}

View File

@ -0,0 +1,43 @@
<?php
/**
* @package JAMA
*
* Pythagorean Theorem:
*
* a = 3
* b = 4
* r = sqrt(square(a) + square(b))
* r = 5
*
* r = sqrt(a^2 + b^2) without under/overflow.
*/
function hypo($a, $b) {
if (abs($a) > abs($b)) {
$r = $b / $a;
$r = abs($a) * sqrt(1 + $r * $r);
} elseif ($b != 0) {
$r = $a / $b;
$r = abs($b) * sqrt(1 + $r * $r);
} else {
$r = 0.0;
}
return $r;
} // function hypo()
/**
* Mike Bommarito's version.
* Compute n-dimensional hyotheneuse.
*
function hypot() {
$s = 0;
foreach (func_get_args() as $d) {
if (is_numeric($d)) {
$s += pow($d, 2);
} else {
throw new Exception(JAMAError(ArgumentTypeException));
}
}
return sqrt($s);
}
*/